De Flora, S., Izzotti, A., Randerath, K., Randerath, E., Bartsch, H., Nair, J., Balansky, R., van Schooten,F., Degan, P., Fronza, G., Walsh, D., Lewtas, J.. DNA adducts and chronic degenerative diseases. pathogenetic relevance and implications in preventive medicine. Mutation Research/Reviews in Genetic Toxicology 1996;366(3):197–238.
DOI: https://doi.org/10.1016/S0165-1110(96)00043-7
Izquierdo-Vega, J.A., Morales-González, J.A., Sánchez-Gutiérrez, M., Betanzos-Cabrera, G., Sosa-Delgado,S.M., Sumaya-Martínez, M.T., Morales-González, Á., Paniagua-Pérez, R., Madrigal-Bujaidar, E., Madrigal-Santillán, E.. Evidence of some natural products with antigenotoxic effects. part 1: Fruits and polysaccharides. Nutrients 2017;9(2).
DOI: https://doi.org/10.3390/nu9020102
Amin, A.R., Kucuk, O., Khuri, F.R., Shin, D.M.. Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology 2009;27(16):2712–2725.
DOI: https://doi.org/10.1200/JCO.2008.20.6235
Unal, F., Taner, G., Yuzbasioglu, D., Yilmaz, S.. Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012;65.
DOI: https://doi.org/10.1007/s10616-012-9504-8
Roy, S.S., Chakraborty, P., Ghosh, P., Ghosh, S., Biswas, J., Bhattacharya, S.. Influence of novel naphthalimidebased organoselenium on genotoxicity induced by an alkylating agent: the role of reactive oxygen species and selenoenzymes. Redox Report 2012;17(4):157–166.
DOI: https://doi.org/10.1179/1351000212Y.0000000018
Ajith, T., Janardhanan, K.. Antimutagenic effect of phellinus rimosus (berk) pilat against chemical induced mutations of histidine
dependent Salmonella typhimurium strains. Food and Chemical Toxicology 2011;49(10):2676–2680.
DOI: https://doi.org/10.1016/j.fct.2011.07.022
Watanabe, M., Kobayashi, H., Ohta, T.. Rapid inactivation of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)furanone (mx), a potent mutagen in chlorinated drinking water, by sulfhydryl compounds. Mutation Research/Environmental Mutagenesis and Related Subjects 1994;312(2):131–138.
DOI: https://doi.org/10.1016/0165-1161(94)90018-3
Teel, R.W.. Ellagic acid binding to DNA as a possible mechanism for its antimutagenic and anticarcinogenic action. Cancer Letters 1986;30(3):329–336.
DOI: https://doi.org/10.1016/0304-3835(86)90058-3
Hour, T.C., Liang, Y.C., Chu, I.S., Lin, J.K.. Inhibition of eleven mutagens by various tea extracts, (-)epigallocatechin-3-gallate, gallic acid and caffeine. Food and Chemical Toxicology 1999;37(6):569–579.
DOI: https://doi.org/10.1016/S0278-6915(99)00031-9
Bouhlel, I., Valenti, K., Kilani, S., Skandrani, I., Sghaier, M.B., Mariotte, A.M., Dijoux-Franca M.G., Ghedira K., Hininger-Favier I., Laporte F., Chekir-Ghedira L.. Antimutagenic, antigenotoxic and antioxidant activities of Acacia salicina extracts (ASE) and modulation of cell gene expression by h2o2 and ase treatment. Toxicology in Vitro 2008;22(5):1264–1272.
DOI: https://doi.org/10.1016/j.tiv.2008.04.008
Morffi, J., Rodeiro, I., Hernández, S.L., González, L., Herrera, J., Espinosa-Aguirre, J.J.. Antimutagenic properties of Mangifera indica l. stem bark extract and evaluation of its effects on hepatic cyp1a1. Plant Foods for Human Nutrition 2012;67(3):223–228.
DOI: https://doi.org/10.1007/s11130-012-0304-2
Boubaker, J., Mansour, H.B., Ghedira, K., Chekir-Ghedira, L.. Antimutagenic and free radical scavenger effects of leaf extracts from Acacia salicina. Annals of Clinical Microbiology and Antimicrobials 2011;10(1):1–10.
DOI: https://doi.org/10.1186/1476-0711-10-37
Prasad, N.R., Jeyanthimala, K., Ramachandran, S.. Caffeic acid modulates ultraviolet radiation-b induced oxidative damage in human blood lymphocytes. Journal of Photochemistry and Photobiology B: Biology 2009; 95(3):196–203.
DOI: https://doi.org/10.1016/j.jphotobiol.2009.03.007
Figat, R., Śliwińska, A., Stochmal, A., Soluch, A., Sobczak, M., Zgadzaj, A., Sykłowska-Baranek, K., Pietrosiuk, A.. Antigenotoxic, antiphotogenotoxic, and antioxidant properties of polyscias filicifolia shoots cultivated in vitro. Molecules 2020; 25(5)..
DOI: https://doi.org/10.3390/molecules25051090
Taner, G., Özkan Vardar, D., Aydin, S., Aytaç, Z., Başaran, A., Başaran, N.. Use of in vitro assays to assess the potential cytotoxic, genotoxic and antigenotoxic effects of vanillic and cinnamic acid. Drug and Chemical Toxicology 2017;40(2):183–190.
DOI: https://doi.org/10.1080/01480545.2016.1190740
Ramadan, D., A. M. Ali, M., Yahya, S., el Sayed, W.. Correlation between antioxidant/antimutagenic and antiproliferative activity of some phytochemicals. Anti-cancer agents in medicinal chemistry 2019;19:1481–1490.
DOI: https://doi.org/10.2174/1871520619666190528091648
Del Baño, M.J., Castillo, J., Benavente-García, O., , Lorente, J., Martín-Gil, R., Acevedo, C., Alcaraz, M.. Radioprotective antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. Journal of Agricultural and Food Chemistry 2006;54(6):2064–2068.
DOI: https://doi.org/10.1021/jf0581574
Tseng, T.H., Wang, C.J., Kao, E.S., hia Yih Chu, . Hibiscus protocatechuic acid protects against oxidative damage induced by tertbutylhydroperoxide in rat primary hepatocytes. Chemico-Biological Interactions 1996; 101(2):137–148.
DOI: https://doi.org/10.1016/0009-2797(96)03721-0
Cavalcante, F.M.L., Almeida, I.V., Düsman, E., Mantovani, M.S., Vicentini, V.E.P.. Cytotoxicity, mutagenicity, and antimutagenicity of the gentisic acid on HTC cells. Drug and Chemical Toxicology 2018;41(2):155–161.
DOI: https://doi.org/10.1080/01480545.2017.1322606
Appiah-Opong, R., Commandeur, J.N., van Vugt-Lussenburg, B., Vermeulen, N.P.. Inhibition of human recombinant cytochrome p450s by curcumin and curcumin decomposition products. Toxicology 2007;235(1):83–91.
DOI: https://doi.org/10.1016/j.tox.2007.03.007
Ferguson, L.R., Zhu, S.t., Harris, P.J.. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Molecular Nutrition & Food Research 2005;49(6):585–593.
DOI: https://doi.org/10.1002/mnfr.200500014
Furtado, M.A., de Almeida, L.C.F., Furtado, R.A., Cunha, W.R., Tavares, D.C.. Antimutagenicity of rosmarinic acid in swiss mice evaluated by the micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2008;657(2):150–154.
DOI: https://doi.org/10.1016/j.mrgentox.2008.09.003
Karekar, V., Joshi, S., Shinde, S.. Antimutagenic profile of three antioxidants in the Ames assay and the drosophila wing spot test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2000;468(2):183–194.
DOI: https://doi.org/10.1016/S1383-5718(00)00055-3
Wargovich, M., Eng, V., Newmark, H.. Inhibition by plant phenols of benzo[a]pyrene-induced nuclear aberrations in mammalian intestinal cells: A rapid in vivo assessment method. Food and Chemical Toxicology 1985;23(1):47–49.
DOI: https://doi.org/10.1016/0278-6915(85)90219-4
Sudheer, A.R., Muthukumaran, S., Kalpana, C., Srinivasan, M., Menon, V.P.. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: A comparison with N-acetylcysteine. Toxicology in Vitro 2007;21(4):576–585.
DOI: https://doi.org/10.1016/j.tiv.2006.11.006
Mladenović, M., Matić, S., Stanić, S., Solujić, S., Mihailović, V., Stanković, N., Katanić, J... Combining molecular docking and 3-d pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: Myricetin, quercetin, rutin, and rosmarinic acid. Biochemical Pharmacology 2013; 86(9):1376–1396.
DOI: https://doi.org/10.1016/j.bcp.2013.08.018
Sasaki, Y., Imanishi, H., Ohta, T., Shirasu, Y.. Modifying effects of components of plant essence of the induction of sister-chromatid exchanges in cultured Chinese hamster ovary cells. Mutation Research Letters 1989; 226(2):103–110.
DOI: https://doi.org/10.1016/0165-7992(89)90051-1
Alarcón-Herrera, N., Flores-Maya, S., Bellido, B., García-Bores, A.M., Mendoza, E., Ávila Acevedo, G., Hernández-Echeagaray, E..Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food and Chemical Toxicology 2017;109:1018–1025. IXth International Symposium on Natural Products Chemistry and its Applications (IX-ISNPCA), Termas de Chillan, Chillan, Chile.
Silva, J.P., Gomes, A.C., Coutinho, O.P.. Oxidative DNA damage protection and repair by polyphenolic compounds in pc12 cells. European Journal of Pharmacology 2008;601(1):50–60.
DOI: https://doi.org/10.1016/j.ejphar.2008.10.046
Carranza-Torres, I., Viveros-Valdez, E., Guzmán-Delgado, N., García-Davis, S., Moran, J., Betancourt-Martínez, N., Balderas-Rentería, I., Carranza-Rosales, P.. Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices. Iranian Journal of Basic Medical Science 2019;22:367–375.
Vinayagam, R., Jayachandran, M., Xu, B.. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytotherapy Research 2016;30(2):184–199. PTR-15-0604.R1.
DOI: https://doi.org/10.1002/ptr.5528
Clifford, M.N.. Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 1999;79(3):362–372.
DOI: https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
Mattila, P., Hellström, J., Törrönen, R.. Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry 2006;54(19):7193–7199.
Pandey, K.B., Rizvi, S.I.. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2009;2(5):270–278.
DOI: https://doi.org/10.4161/oxim.2.5.9498
D’Archivio, M., Filesi, C., Benedetto, R.D., Gargiulo, R., Giovannini, C., Masella, R.. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanità 2007;43(4):348–361.
Belicova, A., Križková, L., Nagy, M., Krajčovič, J., Ebringer, L.. Phenolic acids reduce the genotoxicity of acridine orange and ofloxacin in Salmonella typhimurium. Folia Microbiologica 2001;46(6):511–514.
DOI: https://doi.org/10.1007/BF02817994
Clifford, M.N.. Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture 2000;80(7):1033–1043.
DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T
Zhang, Y.R., yuan Li, Y., Wang, J.Y., Wang, H.W., Wang, H.N., Kang, X.M., Xu, W.Q.. Synthesis and Characterization of a Rosmarinic Acid Derivative that Targets Mitochondria and Protects against RadiationInduced Damage In vitro. Radiation Research 2017;188(3):264–275.
Parus, A.. Przeciwutleniające i farmakologiczne właściwości kwasów fenolowych. Postępy Fitoterapii 2013; 1:48–53.
Berté, K., Beux, M., Spada, P., Salvador, M., Ribani, R.. Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St.-Hil. Aquifoliaceae) extract as obtained by spray drying. Journal of agricultural and food chemistry 2011;59:5523–7.
DOI: https://doi.org/10.1021/jf2008343
Deotale, S.M., Dutta, S., Moses, J., Anandharamakrishnan, C.. Coffee oil as a natural surfactant. Food Chemistry 2019;295:180–188.
DOI: https://doi.org/10.1016/j.foodchem.2019.05.090
Boz, H.. Ferulic acid in cereals - a review. Czech Journal of Food Sciences 2014;33:01–07.
DOI: https://doi.org/10.17221/401/2014-CJFS
Mattila, P., Hellström, J., Törrönen, R.. Phenolic acids in berries, fruits, and beverages. Journal of agricultural and food chemistry 2006;54:7193–9.
DOI: https://doi.org/10.1021/jf0615247
Zhao, C., Jia, Y., Lu, F.. Angelica stem: A potential low-cost source of bioactive phthalides and phytosterols. Molecules 2018;23(12).
DOI: https://doi.org/10.3390/molecules23123065
Eser, F., Sahin yaglioglu, A., Aktas, E., Onal, A., Demirtas, I.. Phytochemical content of centaurea polypodiifolia boiss. var. polypodiifolia. International Journal of Secondary Metabolite 2017:452–458.
DOI: https://doi.org/10.21448/ijsm.376888
Bento da Silva, A., Koistinen, V., Mena, P., Bronze, M., Hanhineva, K., Sahlstrøm, S., Kitryte, V., Moco,S., Aura, A.M.. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? European Journal of Nutrition 2020;59.
DOI: https://doi.org/10.1007/s00394-019-01987-6
Siriamornpun, S., Kaewseejan, N.. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Scientia Horticulturae 2017;221:33–42.
DOI: https://doi.org/10.1016/j.scienta.2017.04.020
Souza, M.C., Santos, M.P., Sumere, B.R., Silva, L.C., Cunha, D.T., Martínez, J., Barbero, G.F., Rostagno, M.A.. Isolation of gallic acid, caffeine and flavonols from black tea by on-line coupling of pressurized liquid extraction with an adsorbent for the production of functional bakery products. LWT 2020;117:108661.
DOI: https://doi.org/10.1016/j.lwt.2019.108661
Jeszka-Skowron, M., Sentkowska, A., De Peña, M.P.. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. European Food Research and Technology 2016;242.
DOI: https://doi.org/10.1007/s00217-016-2643-y
Vallverdú-Queralt, A., Regueiro, J., Martínez-Huélamo, M., Rinaldi Alvarenga, J.F., Leal, L.N., Lamuela-Raventos, R.M.. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry 2014;154:299–307.
DOI: https://doi.org/10.1016/j.foodchem.2013.12.106
Yashin, A., Yashin, Y., Xia, X., Nemzer, B.. Antioxidant activity of spices and their impact on human health: A review. Antioxidants (Basel, Switzerland) 2017;6.
DOI: https://doi.org/10.3390/antiox6030070
Abe-Matsumoto, L., Lajolo, F., Genovese, M.. Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in brazil: Jabuticaba (Myrciaria jaboticaba (vell.) berg). Journal of the science of food and agriculture 2012;92:1679–87.
DOI: https://doi.org/10.1002/jsfa.5531
Liu, Y., Qiu, S., Wang, L., Zhang, N., Shi, Y., Zhou, H., Liu, X., Shao, L., Liu, X.,Chen, J., Hou, M.. Reproductive and developmental toxicity study of caffeic acid in mice. Food and Chemical Toxicology 2019;123:106–112.
DOI: https://doi.org/10.1016/j.fct.2018.10.040
Brautigan, D.L., Gielata, M., Heo, J., Kubicka, E., Wilkins, L.R.. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications 2018;505(2):612–617.
DOI: https://doi.org/10.1016/j.bbrc.2018.09.155
Yamada, K., Shirahata, S., Murakami, H., Nishiyama, K., Shinohara, K., Omura, H.. Dna breakage by phenyl compounds. Agricultural and Biological Chemistry 1985;49(5):1423–1428.
DOI: https://doi.org/10.1080/00021369.1985.10866902
Stich, H.F., Rosin, M.P., Wu, C.H., Powrie, W.D.. A comparative genotoxicity study of chlorogenic acid (3-o-caffeoylquinic acid). Mutation Research/Genetic Toxicology 1981;90(3):201–212.
DOI: https://doi.org/10.1016/0165-1218(81)90001-X
Stich, H., Rosin, M.P., Wu, C.H., Powrie, W.D.. The action of transition metals on the genotoxicity of simple phenols, phenolic acids and cinnamic acids. Cancer Letters 1981;14(3):251–260.
DOI: https://doi.org/10.1016/0304-3835(81)90151-8
Sponchiado, G., Adam, M.L., Silva, C., Silva Soley, B., de Mello-Sampayo, C., Cabrini, D., Correr, C.,Otuki, M.F.. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. Journal of Ethnopharmacology 2016; 178:289–296.
DOI: https://doi.org/10.1016/j.jep.2015.10.026
Kirkland, D., Reeve, L., Gatehouse, D., Vanparys, P.. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2011;721(1):27–73.
DOI: https://doi.org/10.1016/j.mrgentox.2010.12.015
Turkez, H., Arslan, M.E., Ozdemir, O.. Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism & Toxicology 2017;13(10):1089–1098.
DOI: https://doi.org/10.1080/17425255.2017.1375097
Ames, B.N., McCann, J., Yamasaki, E.. Methods for detecting carcinogens and mutagens with the Salmonella / mammalian-microsome mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 1975;31(6):347–363.
DOI: https://doi.org/10.1016/0165-1161(75)90046-1
OECD:471, . Test no. 471: Bacterial reverse mutation test. OECD Publishing 1997.
Bez, G., Jordão, B., Vicentini, V., Mantovani, M.. Investigation of genotoxic and antigenotoxic activities of chlorophylls and chlorophyllin in cultured v79 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2001;497(1):139–145.
DOI: https://doi.org/10.1016/S1383-5718(01)00251-0
de Oliveira, J.M., Jordão, B., Ribeiro, L.R., da Eira, A.F., Mantovani, M.. Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food and Chemical Toxicology 2002;40(12):1775–1780.
DOI: https://doi.org/10.1016/S0278-6915(02)00156-4
Shaposhnikov, S.A., Salenko, V.B., Brunborg, G., Nygren, J., Collins, A.R.. Single-cell gel electrophoresis (the comet assay): Loops or fragments? ELECTROPHORESIS 2008;29(14):3005–3012.
DOI: https://doi.org/10.1002/elps.200700921
Hovhannisyan, G.G.. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology. Molecular Cytogenetics 2010;3(1):17.
DOI: https://doi.org/10.1186/1755-8166-3-17
Harb, H., Mahfouz, H., Maher, N.. Anti-mutagenic potential of algal extracts on chromosomal aberrations in allium cepa l. Acta Biologica Hungarica 2017;68:137–149.
DOI: https://doi.org/10.1556/018.68.2017.2.2
Costa, M., Regina, M., Filho, M., Linde, G., Valle, J., Paccola, L., Colauto, N.. Photoprotective and antimutagenic activity of agaricus subrufescens basidiocarp extracts. Current microbiology 2015;71:476–482.
DOI: https://doi.org/10.1007/s00284-015-0859-x
Todorova, A., Pesheva, M., Iliev, I., Bardarov, K., Todorova, T.. Antimutagenic, antirecombinogenic, and antitumor effect of amygdalin in a yeast cell-based test and mammalian cell lines. Journal of medicinal food 2017;20.
DOI: https://doi.org/10.1089/jmf.2016.0108
Pimentel, E., Cruces, M.P.. Antimutagenic action of the live yeast can be transmitted to the offspring of drosophila melanogaster. a genetic study using the wing spot assay. Environmental Toxicology and Pharmacology 2018; 57:28–33.
DOI: https://doi.org/10.1016/j.etap.2017.11.010
Birošová, L., Mikulášová, M., Vaverková, Š.. Antimutagenic effect of phenolic acids. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005;149(2):489–91.
DOI: https://doi.org/10.5507/bp.2005.087
Yamada, J., Tomita, Y.. Antimutagenic activity of caffeic acid and related compounds. Bioscience, Biotechnology, and Biochemistry 1996;60(2):328–329.
DOI: https://doi.org/10.1271/bbb.60.328
Alldrick, A., Flynn, J., Rowland, I.. Effects of plant-derived flavonoids and polyphenolic acids on the activity of mutagens from cooked food. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1986;163(3):225–232.
DOI: https://doi.org/10.1016/0027-5107(86)90020-5
San, R., Chan, R.. Inhibitory effect of phenolic compounds on aflatoxin B1 metabolism and induced mutagenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1987;177(2):229–239.
DOI: https://doi.org/10.1016/0027-5107(87)90005-4
Grey, C.E., Adlercreutz, P.. Ability of antioxidants to prevent oxidative mutations in Salmonella typhimurium TA102. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2003;527(1):27–36.
DOI: https://doi.org/10.1016/S0027-5107(03)00054-X
Chan, R.I., San, R.H., Stich, H.F.. Mechanism of inhibition of n-methyl-N-nitro-N-nitrosoguanidine-induced mutagenesis by phenolic compounds. Cancer Letters 1986;31(1):27–34.
DOI: https://doi.org/10.1016/0304-3835(86)90163-1
Francis, A., Shetty, T., Bhattacharya, R.. Modification of the mutagenicity of aflatoxin B1 and N-methyl-nnitro-N-nitrosoguanidine by certain phenolic compounds. Cancer Letters 1989;45(3):177–182.
DOI: https://doi.org/10.1016/0304-3835(89)90074-8
Stagos, D., Ouris, S., Kouretas, D.. Plant phenolics protect from bleomycin-induced oxidative stress and mutagenicity in Salmonella typhimurium TA102.. Anticancer Research 2004;24(2B):743–746.
Shimoi, K., Nakamura, Y., Tomita, I., Hara, Y., Kada, T.. The pyrogallol related compounds reduce UV-induced mutations in escherichia coli b/r wp2. Mutation Research Letters 1986;173(4):239–244.
DOI: https://doi.org/10.1016/0165-7992(86)90017-5
Amari, F., Fettouche, A., Samra, M.A., Kefalas, P., Kampranis, S.C., Makris, A.M.. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. Journal of Agricultural and Food Chemistry 2008;56(24):11740–11751.
DOI: https://doi.org/10.1021/jf802829r
Kim, J., Campbell, B., Yu, J., Mahoney, N., Chan, K., Molyneux, R., Bhatnagar, D., Cleveland, T.. Examination of fungal stress response genes using Saccharomyces cerevisiae as a model system: Targeting genes affecting aflatoxin biosynthesis by aspergillus flavus link. Applied microbiology and biotechnology 2005;67:807–15.
DOI: https://doi.org/10.1007/s00253-004-1821-1
Lima, C.F., Fernandes-Ferreira, M., Pereira-Wilson, C.. Phenolic compounds protect hepg2 cells from oxidative damage: Relevance of glutathione levels. Life Sciences 2006;79(21):2056–2068.
DOI: https://doi.org/10.1016/j.lfs.2006.06.042
Fabiani, R., Rosignoli, P., De Bartolomeo, A., Fuccelli, R., Servili, M., Montedoro, G.F., Morozzi, G.. Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic compounds in human blood mononuclear cells and HL60 cells. The Journal of Nutrition 2008;138(8):1411–1416.
DOI: https://doi.org/10.1093/jn/138.8.1411
Nousis, L., Doulias, P.T., Aligiannis, N., Bazios, D., Agalias, A., Galaris, D., Mitakou, S.. DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free Radical Research 2005;39(7):787–795.
DOI: https://doi.org/10.1080/10715760500045806
Szeto, Y.T., Benzie, I.F.. Effects of dietary antioxidants on human DNA ex vivo. Free Radical Research 2002; 36(1):113–118.
DOI: https://doi.org/10.1080/10715760210161
Szeto, Y., Collins, A., Benzie, I.. Effects of dietary antioxidants on DNA damage in lysed cells using a modified comet assay procedure. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2002; 500(1):31–38.
DOI: https://doi.org/10.1016/S0027-5107(01)00298-6
Burdette, J.E., Chen, S.n., Lu, Z.Z., Xu, H., White, B.E.P., Fabricant, D.S., Liu, J., Fong, H.H.S., Farnsworth,N.R., Constantinou, A.I., van Breemen, R.B., Pezzuto, J.M., Bolton, J.L.. Black cohosh (Cimicifuga racemosa l.) protects against menadione-induced DNA damage through scavenging of reactive oxygen species: bioassay-directed isolation and characterization of active principles. Journal of Agricultural and Food Chemistry 2002;50(24):7022–7028.
DOI: https://doi.org/10.1021/jf020725h
Stagos, D., Spanou, C., Margariti, M., Stathopoulos, C., Mamuris, Z., Kazantzoglou, G., Magiatis, P.,Kouretas, D.. Cytogenetic effects of grape extracts (Vitis vinifera) and polyphenols on mitomycin C -induced sister chromatid exchanges (sces) in human blood lymphocytes. Journal of Agricultural and Food Chemistry 2007;55(13):5246–5252.
DOI: https://doi.org/10.1021/jf0635255
Benkovic, V., Knezevic, A.H., Orsolic, N., Basic, I., Ramic, S., Viculin, T., Knezevic, F., Kopjar, N.. Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells. Phytotherapy Research 2009;23(8):1159–1168.
DOI: https://doi.org/10.1002/ptr.2774
Devipriya, N., Sudheer, A.R., Menon, V.P.. Caffeic acid protects human peripheral blood lymphocytes against gamma radiation-induced cellular damage. Journal of Biochemical and Molecular Toxicology 2008; 22(3):175–186.
DOI: https://doi.org/10.1002/jbt.20228
Benković, V., Orsolić, N., Knežević, A.H., Ramić, S., Ðikić, D., Bašić, I., Kopjar, N.. Evaluation of the radioprotective effects of propolis and flavonoids in gamma-irradiated mice: The alkaline comet assay study. Biological and Pharmaceutical Bulletin 2008;31(1):167–172.
DOI: https://doi.org/10.1248/bpb.31.167
Sudharsan-Raj, A., Heddle, J.A., Newmark, H.L., Katz, M.. Caffeic acid as an inhibitor of dmba-induced chromosomal breakage in mice assessed by bone-marrow micronucleus test. Mutation Research/Genetic Toxicology 1983;124(3):247–253.
DOI: https://doi.org/10.1016/0165-1218(83)90196-9
Coelho, V., Vieira, C., Souza, L., Silva, L., Pfluger, P., Regner, G., Papke, D., Picada, J., Pereira, P.. Behavioral and genotoxic evaluation of rosmarinic and caffeic acid in acute seizure models induced by pentylenetetrazole and pilocarpine in mice:. NaunynSchmiedeberg’s Archives of Pharmacology 2016;389.
DOI: https://doi.org/10.1007/s00210-016-1281-z
Coelho, V.R., Vieira, C.G., [de Souza], L.P., Moysés, F., Basso, C., Papke, D.K.M., Pires, T.R., Siqueira, I.R., Picada, J.N., Pereira, P.. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sciences 2015;122:65–71.
DOI: https://doi.org/10.1016/j.lfs.2014.11.009
Cariddi, L., Sabini, M., Escobar, F., Montironi, I., Mañas, F., Iglesias, D., Comini, L., Sabini, L., Dalcero, A.. Polyphenols as possible bioprotectors against cytotoxicity and DNA damage induced by ochratoxin a. Environmental Toxicology and Pharmacology 2015;39(3):1008–1018.
DOI: https://doi.org/10.1016/j.etap.2015.03.013
Lodovici, M., Guglielmi, F., Meoni, M., Dolara, P.. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology 2001;39(12):1205–1210.
DOI: https://doi.org/10.1016/S0278-6915(01)00067-9
Ferguson, L.R., Lim, I.F., Pearson, A.E., Ralph, J., Harris, P.J.. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2003; 542(1):49–58.
DOI: https://doi.org/10.1016/j.mrgentox.2003.08.005
Srinivasan, M., Sudheer, A.R., Pillai, K.R., Kumar, P.R., Sudhakaran, P., Menon, V.. Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology 2006;228(2):249–258.
DOI: https://doi.org/10.1016/j.tox.2006.09.004
Maurya, D., Nair, K.. Preferential radioprotection to DNA of normal tissues by ferulic acid under ex vivo and in vivo conditions in tumor bearing mice. Molecular and cellular biochemistry 2006;285:181–90.
DOI: https://doi.org/10.1007/s11010-005-9079-1
Maurya, D., Salvi, V., Nair, K.. Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Molecular and cellular biochemistry 2006;280:209–17.
DOI: https://doi.org/10.1007/s11010-005-0170-4
Prasad, N.R., Srinivasan, M., Pugalendi, K., Menon, V.P.. Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2006;603(2):129–134.
DOI: https://doi.org/10.1016/j.mrgentox.2005.11.002
Das, U., Manna, K., Khan, A., Sinha, M., Biswas, S., Sengupta, A., Chakraborty, A., Dey, S.. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Free Radical Research 2017;51(1):47–63.
DOI: https://doi.org/10.1080/10715762.2016.1267345
Maurya, D.K., Devasagayam, T.P.A.. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice. Cancer Biotherapy and Radiopharmaceuticals 2013;28(1):51–57.
DOI: https://doi.org/10.1089/cbr.2012.1263
Sudheer, A.R., Muthukumaran, S., Devipriya, N., Devaraj, H., Menon, V.P.. Influence of ferulic acid on nicotine-induced lipid peroxidation, DNA damage and inflammation in experimental rats as compared to N-acetylcysteine. Toxicology 2008;243(3):317–329.
DOI: https://doi.org/10.1016/j.tox.2007.10.016
Balakrishnan, S., Menon, V., Manoharan, S., Rajalingam, K.. Antigenotoxic effect of ferulic acid in 7,12dimethyl benz(a)-anthracene (dmba) induced genotoxicity. Afr J Tradit Complement Altern Med 2007;5(1):32–38.
DOI: https://doi.org/10.4314/ajtcam.v5i1.31253
Motohashi, N., Ashihara, Y., Yamagami, C., Saito, Y.. Structure–antimutagenic activity relationships of benzalacetone derivatives against UV-induced mutagenesis in e. coli wp2uvra and -induced mutagenesis in Salmonella typhimurium TA2638. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2001;474(1):113–120.
DOI: https://doi.org/10.1016/S0027-5107(00)00167-6
Cinkilic, N., Tüzün, E., Çetintaş, S.K., Özgür Vatan, , Yılmaz, D., Çavaş, T., Tunç, S., Özkan, L., Bilaloğlu, R.. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by x-rays in human blood lymphocytes in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2014;770:72–79.
DOI: https://doi.org/10.1016/j.mrgentox.2014.04.025
Almeida, I.V., Cavalcante, F.M.L., Vicentini, V.E.P.. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage. Genetics and molecular research 2016;15(4).
DOI: https://doi.org/10.4238/gmr15049388
Erdem, M., Cinkilic Aydemir, N., Vatan, O., yılmaz, D., Bagdas, D., Bilaloglu, R.. Genotoxic and antigenotoxic effects of vanillic acid against mitomycin c-induced genomic damage in human lymphocytes in vitro. Asian Pacific journal of cancer prevention : APJCP 2012;13:4993–8.
DOI: https://doi.org/10.7314/APJCP.2012.13.10.4993
Niikawa, M., Nakamura, T., Nagase, H.. Effect of cotreatment of aspirin metabolites on mitomycin c-induced genotoxicity using the somatic mutation and recombination test in drosophila melanogaster. Drug and Chemical Toxicology 2006;29(4):379–396.
DOI: https://doi.org/10.1080/01480540600820528
Zgadzaj, A., Kornacka, J., Jastrzębska, A., Parzonko, A., Sommer, S., Nałęcz-Jawecki, G.. Development of photoprotective, antiphototoxic, and antiphotogenotoxic formulations of ocular drugs with fluoroquinolones. Journal of Photochemistry and Photobiology B: Biology 2018;178:201–210.
DOI: https://doi.org/10.1016/j.jphotobiol.2017.11.011
Anter, J., Romero-Jiménez, M., Fernández-Bedmar, Z., Villatoro-Pulido, M., Analla, M., Alonso-Moraga, A., Muñoz-Serrano, A.. Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. Journal of Medicinal Food 2011;14(3):276 –283.
DOI: https://doi.org/10.1089/jmf.2010.0139
Radhiga, T., Sundaresan, A., Viswanathan, P., Pugalendi, K.V.. Effect of protocatechuic acid on lipid profile and DNA damage in dgalactosamine-induced hepatotoxic rats. Journal of Basic and Clinical Physiology and Pharmacology 2016;27(5):505–514.
DOI: https://doi.org/10.1515/jbcpp-2015-0135
Makena, P.S., Chung, K.T.. Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. Food and Chemical Toxicology 2007;45(10):1899–1909.
DOI: https://doi.org/10.1016/j.fct.2007.04.007
Liu, M.M., Huang, K.M., Qian, L., Chatterjee, P., Zhang, S., Li, R., Zhou, S., Wang, Z., Luo, Y., Huang, Y.. Effects of bioactive constituents in the traditional chinese medicinal formula si–wu–tang on Nrf2 signaling and neoplastic cellular transformation. Phytomedicine 2018;40:1–9.
DOI: https://doi.org/10.1016/j.phymed.2017.12.031
Gichner, T., Pospísil, F., Velemínský, J., Volkeová, V., Volke, J.. Two types of antimutagenic effects of gallic and tannic acids towards N-nitroso compounds–induced mutagenicity in the Ames Salmonella assay. Folia microbiologica 1987;32:55–62.
DOI: https://doi.org/10.1007/BF02877259
Nakayama, T., Hiramitsu, M., Osawa, T., Kawakishi, S.. The protective role of gallic acid esters in bacterial cytotoxicity and SOS responses induced by hydrogen peroxide. Mutation Research Letters 1993;303(1):29–34.
DOI: https://doi.org/10.1016/0165-7992(93)90005-G
Abdelwahed, A., Bouhlel, I., Skandrani, I., Valenti, K., Kadri, M., Guiraud, P., Steiman, R., Mariotte, A.M., Ghedira, K., Laporte, F., Dijoux-Franca, M.G., Chekir-Ghedira, L.. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chemico-Biological Interactions 2007;165(1):1–13.
DOI: https://doi.org/10.1016/j.cbi.2006.10.003
Hricovíniová, J., Ševčovičová, A., Hricovíniová, Z.. Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicology in Vitro 2020;65:104789.
DOI: https://doi.org/10.1016/j.tiv.2020.104789
Sugisawa, A., Kimura, M., Fenech, M., Umegaki, K.. Anti-genotoxic effects of tea catechins against reactive oxygen species in human lymphoblastoid cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2004;559(1):97–103.
DOI: https://doi.org/10.1016/j.mrgentox.2004.01.002
Gandhi, N., Nair, K.. Protection of DNA and membrane from gamma radiation induced damage by gallic acid. Molecular and cellular biochemistry 2005;278:111–7.
DOI: https://doi.org/10.1007/s11010-005-6940-1
Terwel, L., [van der Hoveen], J.C.. Antimutagenic activity of some naturally occurring compounds towards cigarette-smoke condensate and benzo[a]pyrene in the Salmonella/microsome assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1985;152(1):1–4.
DOI: https://doi.org/10.1016/0027-5107(85)90039-9
Yoshimoto, M., Yahara, S., Okuno, S., Islam, M.S., Ishiguro, K., Yamakawa, O.. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas l.) leaf. Bioscience, Biotechnology, and Biochemistry 2002;66(11):2336– 2341.
DOI: https://doi.org/10.1271/bbb.66.2336
Abraham, S.K., Eckhardt, A., Oli, R.G., Stopper, H.. Analysis of in vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012;744(2):117–124.
DOI: https://doi.org/10.1016/j.mrgentox.2012.01.011
Abraham, S.K., Schupp, N., Schmid, U., Stopper, H.. Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Molecular Nutrition & Food Research 2007;51(7):880–887.
DOI: https://doi.org/10.1002/mnfr.200600214
Alarcón-Herrera, N., Flores-Maya, S., Bellido, B., García-Bores, A.M., Mendoza, E., Ávila Acevedo, G., Hernández-Echeagaray, E.. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food and Chemical Toxicology 2017;109(Part 2):1018–1025.
DOI: https://doi.org/10.1016/j.fct.2017.04.048
Cha, J., Piao, M., Kim, K.C., Yao, C., Zheng, J., Kim, S., Hyun, C., Ahn, Y., Hyun, J.. The polyphenol chlorogenic acid attenuates UVbmediated oxidative stress in human hacat keratinocytes. Biomolecules therapeutics 2014;22:136–42.
DOI: https://doi.org/10.4062/biomolther.2014.006
Cinkilic, N., Cetintas, S.K., Zorlu, T., Vatan, O., Yilmaz, D., Cavas, T., Tunc, S., Ozkan, L., Bilaloglu, R.. Radioprotection by two phenolic compounds: Chlorogenic and quinic acid, on x-ray induced DNA damage in human blood lymphocytes in vitro. Food and Chemical Toxicology 2013;53:359–363.
DOI: https://doi.org/10.1016/j.fct.2012.12.008
Abraham, S.K., Sarma, L., Kesavan, P.. Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiationinduced in vivo chromosomal damage. Mutation Research Letters 1993;303(3):109–112.
DOI: https://doi.org/10.1016/0165-7992(93)90022-N
Ghaffari, H., Venkataramana, M., Ghassam], B.J., Nayaka], S.C., Nataraju, A., Geetha, N., Prakash, H.. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 2014;113(1):7–13.
DOI: https://doi.org/10.1016/j.lfs.2014.07.010
Ramos, A.A., Azqueta, A., Pereira-Wilson, C., Collins, A.R.. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. Journal of Agricultural and Food Chemistry 2010;58(12):7465–7471.
DOI: https://doi.org/10.1021/jf100082p
Furtado, R.A., de Araújo, F.R.R., Resende, F.A., Cunha, W.R., Tavares, D.C.. Protective effect of rosmarinic acid on v79 cells evaluated by the micronucleus and comet assays. Journal of Applied Toxicology 2010; 30(3):254–259.
DOI: https://doi.org/10.1002/jat.1491
Alcaraz, M., Alcaraz-Saura, M., Achel, G., Olivares, A., López-Morata, J., Castillo, J.. Radiosensitizing effect of rosmarinic acid in metastatic melanoma b16f10 cells. Anticancer research 2014;34:1913–21.
Alcaraz, M., Armero, D., MArtínez, Y., Castillo, J., Benavente-García, O., Fernandez, H., Alcaraz-Saura, M., Canteras, M.. Chemical genoprotection: Reducing biological damage to as low as reasonably achievable levels. Dento maxillo facial radiology 2011;40:310–4.
DOI: https://doi.org/10.1259/dmfr/95408354
Sánchez-Campillo, M., Gabaldon, J., Castillo, J., Benavente-García, O., Baño, M.D., Alcaraz, M., Vicente, V., Alvarez, N., Lozano, J.. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food and Chemical Toxicology 2009;47(2):386–392.
DOI: https://doi.org/10.1016/j.fct.2008.11.026
Zhang, Y.R., Li, Y.y., Wang, J.Y., Wang, H.W., Wang, H.N., Kang, X.M., Xu, W.Q.. Synthesis and Characterization of a Rosmarinic Acid Derivative that Targets Mitochondria and Protects against RadiationInduced Damage In vitro. Radiation Research 2017;188(3):264–275.
DOI: https://doi.org/10.1667/RR14590.1
Oliveira], N.C.D., Sarmento, M.S., Nunes, E.A., Porto, C.M., Rosa, D.P., Bona, S.R., Rodrigues, G., Marroni, N.P., Pereira, P., Picada, J.N., Ferraz, A.B., Thiesen, F.V., Silva, J.D.. Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food and Chemical Toxicology 2012;50(5):1208–1214.
DOI: https://doi.org/10.1016/j.fct.2012.01.028
Luft, J., Steffens, L., Morás, A., Rosa, M., Leipnitz, G., Regner, G., Pflüger, P., Gonçalves, D., Moura, D., Pereira, P.. Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology 2019;392.
DOI: https://doi.org/10.1007/s00210-019-01675-6
Furtado, R., Oliveira, B., Silva, L., Cleto, S., Munari, C., Cunha, W., Tavares, D.. Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP) 2014;24.
DOI: https://doi.org/10.1097/CEJ.0000000000000055
Zahin, M., Ahmad, I., Gupta, R., Aqil, F.. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo[a]pyrene induced DNA adducts. BioMed research international 2014;2014:467465.
DOI: https://doi.org/10.1155/2014/467465
de Mejıa, E.G., Castaño-Tostado, E., Loarca-Piña, G.. Antimutagenic effects of natural phenolic compounds in beans. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1999;441(1):1–9.
DOI: https://doi.org/10.1016/S1383-5718(99)00040-6
Loarca-Piña, G., Kuzmicky, P.A., González de Mejıa, E., Kado, N.Y.. Inhibitory effects of ellagic acid on the direct-acting mutagenicity of aflatoxin B1 in the Salmonella microsuspension assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1998;398(1):183–187.
DOI: https://doi.org/10.1016/S0027-5107(97)00245-5
Loarca-Piña, G., Kuzmicky, P.A., González de Mejía, E., Kado, N.Y., Hsieh, D.P.. Antimutagenicity of ellagic acid against aflatoxin B1 in the Salmonella microsuspension assay. Mutation Research/Environmental Mutagenesis and Related Subjects 1996;360(1):15–21.
DOI: https://doi.org/10.1016/S0165-1161(96)90232-0
Mandal, S., Ahuja, A., Shivapurkar, N.M., Cheng, S.J., Groopman, J.D., Stoner, G.D.. Inhibition of aflatoxin B1 mutagenesis in Salmonella typhimurium and DNA damage in cultured rat and human tracheobronchial tissues by ellagic acid . Carcinogenesis 1987;8(11):1651–1656.
DOI: https://doi.org/10.1093/carcin/8.11.1651
Soni, K., Lahiri, M., Chackradeo, P., Bhide, S., Kuttan, R.. Protective effect of food additives on aflatoxininduced mutagenicity and hepatocarcinogenicity. Cancer Letters 1997;115(2):129–133.
DOI: https://doi.org/10.1016/S0304-3835(97)04710-1
Wilson, T., Lewis, M., Cha, K., Gold, B.. The effect of ellagic acid on xenobiotic metabolism by cytochrome P-450IIE1 and nitrosodimethylamine mutagenicity. Cancer Letters 1992;61(2):129–134.
DOI: https://doi.org/10.1016/0304-3835(92)90170-Z
Dixit, R., Gold, B.. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic.
Proceedings of the National Academy of Sciences of the United States of America 1986;83:8039–43.
Dixit, R., Gold, B.. Mechanism of inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA binding by ellagic acid. IARC scientific publications 1987;84:197–9.
Lord, H., Josephy, P., Snieckus, V.. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity. Chemical research in toxicology 1990;3:195–8.
DOI: https://doi.org/10.1021/tx00015a002
Teel, R., Castonguay, A.. Antimutagenic effects of polyphenolic compounds. Cancer Letters 1992;66(2):107–113.
DOI: https://doi.org/10.1016/0304-3835(92)90222-H
Miller, C., Castonguay, A., Teel, R.W.. Modulation of the mutagenicity and metabolism of the tobaccospecific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by phenolic compounds. Mutation Research/Genetic Toxicology 1996;368(3):221–233.
DOI: https://doi.org/10.1016/S0165-1218(96)90064-6
Kumar, A., Tyagi, Y.K.,, , Ponnan, P., Rohil, V., Prasad, A.K., Dwarkanath, B.S., Parmar, V.S., Raj, H.G.. Ellagic acid peracetate is superior to ellagic acid in the prevention of genotoxicity due to aflatoxin B1 in bone marrow and lung cells. Journal of Pharmacy and Pharmacology 2007;59(1):81–86.
DOI: https://doi.org/10.1211/jpp.59.1.0011
Zheng, Q., Hirose, Y., Yoshimi, N., Murakami, A., Koshimizu, K., Ohigashi, H., Sakata, K., Matsumoto, Y., Sayama, Y., Mori, H.. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. Journal of Cancer Research and Clinical Oncology 2002;128(10):539–546.
DOI: https://doi.org/10.1007/s00432-002-0373-y
Ferrari, C.. Functional foods, herbs and nutraceuticals: Towards biochemical mechanisms of healthy aging. Biogerontology 2004;5:275–89.
DOI: https://doi.org/10.1007/s10522-004-2566-z
Khanduja, K.L., Majid, S.. Ellagic acid inhibits DNA binding of benzo[a]pyrene activated by different modes. Journal of Clinical Biochemistry and Nutrition 1993;15(1):1–9.
DOI: https://doi.org/10.3164/jcbn.15.1
Parzonko, A., Kiss, A.K.. Caffeic acid derivatives isolated from galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation. Phytomedicine 2019;57:215–222.
DOI: https://doi.org/10.1016/j.phymed.2018.12.022
Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R.. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry 2006;98(1):23–31.
DOI: https://doi.org/10.1016/j.foodchem.2005.05.044
Carranza-Torres, I., Viveros-Valdez, E., Guzmán-Delgado, N., García-Davis, S., Moran, J., Betancourt, N., Balderas-Rentería, I., Carranza-Rosales, P.. Protective effects of phenolic acids on mercuryinduced DNA damage in precision-cut kidney slices. Iranian Journal of Basic Medical Science 2019;22:367–375.
Liu, R.H.. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. The Journal of Nutrition 2004;134(12):3479S–3485S.
DOI: https://doi.org/10.1093/jn/134.12.3479S