Blix, G.; Svennerholm, L.; Werner, I.; Finsnes, E.; Sörensen, J.S.; Sörensen, N.A. The Isolation of Chondrosamine from Gangliosides and from Submaxillary Mucin. Acta Chem. Scand. 1952, 6, 358–362. DOI: 10.3891/acta.chem.scand.06-0358.
Blix, F.G.; Gottschalk, A.; Klenk, E. Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179(4569), Art. No: 1088. DOI: 10.1038/1791088b0
Essentials of Glycobiology — NCBI Bookshelf.
Available online: https://www.ncbi.nlm.nih.gov/
books/NBK579918 (accessed on 13 June 2024).
Lundblad, A. Gunnar Blix and His Discovery
of Sialic Acids. Fascinating Molecules in
Glycobiology. Ups. J. Med. Sci. 2015, 1–9. DOI: 10.3109/03009734.2015.1027429
Carter, A.; Martin, N.H. Serum Sialic Acid Levels in Health and Disease. J. Clin. Pathol. 1962, 15(1), 69–72. doi: 10.1136/jcp.15.1.69
Schauer, R.; Kamerling, J.P. Exploration of the Sialic Acid World. Adv. Carbohyd. Chem. Biochem., 2018, 75, 1–213. DOI: 10.1016/bs.accb.2018.09.001
Gottschalk, A. Structural Relationship between Sialic Acid, Neuraminic Acid and 2-Carboxy-Pyrrole. Nature 1955, 176(4488), 881–882. doi: 10.1038/176881a0
Von Itzstein, M.; Thomson, R.J. The Synthesis of Novel Sialic Acids as Biological Probes. In Glycoscience Synthesis of Oligosaccharides and Glycoconjugates; Driguez, H., Thiem, J., Eds.; Springer, Berlin, Heidelberg, 1997; Volume 186, pp. 119–170. doi: 10.1007/BFb0119222
Yang, H.; Lu, L.; Chen, X. An Overview and Future Prospects of Sialic Acids. Biotechnol. Adv. 2021, 46, Art. No: 107678. doi: 10.1016/j.biotechadv.2020.107678
McNaught, A.D. Nomenclature of Carbohydrates (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68(10), 1919–2008. DOI: 10.1351/pac199668101919
Lewis, A.L.; Toukach, P.; Bolton, E. et al. Cataloging Natural Sialic Acids and Other Nonulosonic Acids (NulOs), and Their Representation Using the Symbol Nomenclature for Glycans. Glycobiology 2023, 33(2), 99–103. DOI: 10.1093/glycob/cwac072
Pradhan, K.; Kulkarni, S.S. Synthesis of Nonulosonic Acids. Eur. J. Org. Chem. 2020, 2020(44), 6819–6830. DOI: 10.1002/ejoc.202000250
Knirel, Y. A.; Vinogradov, E.V.; L’vov, V.L.; Kocharova, N.A.; Shashkov, A.S.; Dmitriev, B.A.; Kochetkov,
N.K. Sialic Acids of a New Type from the Lipopolysaccharides of Pseudomonas Aeruginosa and Shigella Boydii. Carbohydr. Res. 1984, 133(2), C5–C8. DOI: 10.1016/0008-6215(84)85213-1
Zamora, C.Y.; Schocker, N.S.; Chang, M.M.; Imperiali, B. Chemoenzymatic Synthesis and Applications of Prokaryote-Specific UDP-Sugars. In Methods in Enzymology; Elsevier, Amsterdam, Netherlands,
; Volume 597, pp. 145–186. DOI: 10.1016/bs.mie.2017.06.003
Varki, A. Biological Roles of Glycans. Glycobiology 2017, 27(1), 3–49. DOI: 10.1093/glycob/cww086
Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of Disease: The Human N-Glycome. BBA – Gen. Sub. 2016, 1860(8), 1574–1582. DOI: 10.1016/j.bbagen.2015.10.016
Visser, E. A.; Moons, S.J.; Timmermans, S.B.P.E.; De Jong, H.; Boltje, T.J.; Büll, C. Sialic Acid O-Acetylation: From Biosynthesis to Roles in Health and Disease. J. Biol. Chem. 2021, 297(2), Art. No: 100906. DOI: 10.1016/j.jbc.2021.100906
Sumida, M.; Hane, M.; Yabe, U.; Shimoda, Y.; Pearce, O.M.T.; Kiso, M.; Miyagi, T.; Sawada, M.; Varki, A.; Kitajima, K.; Sato, C. Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by Exovesicular Sialidase Triggers Release of Preexisting Surface Neurotrophin. J. Biol. Chem. 2015, 290(21), 13202–13214. DOI: 10.1074/jbc.M115.638759
Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42(D1), D490–D495. DOI: 10.1093/nar/gkt1178
Ling, A.J.W.; Chang, L.S.; Babji, A.S.; Latip, J.; Koketsu, M.; Lim, S.J. Review of Sialic Acid’s Biochemistry, Sources, Extraction and Functions with Special Reference to Edible Bird’s Nest.
Food Chem. 2022, 367, Art. No: 130755. DOI: 10.1016/j.foodchem.2021.130755
Gottschalk, A. The Chemistry and Biology of Sialic Acids and Related Substances, University Press, Cambridge, England, 1960, pp. 12–44.
Kątnik−Prastowska, I. Struktura i biologia kwasów sjalowych, Adv. Clin. Exp. Med., 2003, 12(5), 653–663
Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The Sweet Spot: Defining Virus–Sialic Acid Interactions. Nat. Rev. Microbiol. 2014, 12(11), 739–749. DOI: 10.1038/nrmicro3346
Wasik, B.R.; Barnard, K.N.; Parrish, C.R. Effects of
Sialic Acid Modifications on Virus Binding and Infection. Trends Microbiol. 2016, 24(12), 991–1001. DOI: 10.1016/j.tim.2016.07.005
Varki, A.; Gagneux, P. Multifarious Roles of Sialic Acids in Immunity. Ann. N. Y. Acad. Sci. 2012, 1253(1), 16–36. DOI: 10.1111/j.1749-6632.2012.06517.x
Petridis, A.K.; El Maarouf, A.; Rutishauser, U. Polysialic Acid Regulates Cell Contact‐dependent Neuronal Differentiation of Progenitor Cells from the Subventricular Zone. Dev. Dyn. 2004, 230(4), 675–684. DOI: 10.1002/dvdy.20094
Kiss, J.Z.; Rougon, G. Cell Biology of Polysialic Acid. Curr. Opin. Neurobiol. 1997, 7(5), 640–646. DOI: 10.1016/S0959-4388(97)80083-9
Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22(9), 1147–1162. DOI: 10.1093/glycob/cws074
Corfield, T. Bacterial Sialidases — Roles in Pathogenicity and Nutrition. Glycobiology 1992, 2(6), 509–521. DOI: 10.1093/glycob/2.6.509
Chen, G.-Y.; Brown, N.K.; Wu, W.; Khedri, Z.; Yu, H.; Chen, X.; Van De Vlekkert, D.; D’Azzo, A.; Zheng, P.; Liu, Y. Broad and Direct Interaction between TLR and Siglec Families of Pattern Recognition Receptors and Its Regulation by Neu1. eLife 2014, 3, Art. No: e04066. DOI: 10.7554/eLife.04066
Heise, T.; Pijnenborg, J.F.A.; Büll, C.; Van Hilten, N.; Kers-Rebel, E.D.; Balneger, N.; Elferink, H.; Adema, G.J.; Boltje, T.J. Potent Metabolic Sialylation
Inhibitors Based on C-5-Modified Fluorinated Sialic Acids. J. Med. Chem. 2019, 62(2), 1014–1021. DOI: 10.1021/acs.jmedchem.8b01757
Heise, T.; Langereis, J.D.; Rossing, E.; De Jonge, M.I.; Adema, G.J.; Büll, C.; Boltje, T.J. Selective
Inhibition of Sialic Acid-Based Molecular Mimicry in Haemophilus Influenzae Abrogates Serum Resistance. Cell Chem. Biol. 2018, 25(10), 1279-1285. DOI: 10.1016/j.chembiol.2018.05.018
Ikeda, K.; Sano, K.; Ito, M.; Saito, M.; Hidari, K.; Suzuki, T.; Suzuki, Y.; Tanaka, K. Synthesis of 2-Deoxy-2,3-Didehydro-N-Acetylneuraminic Acid Analogues Modified at the C-4 and C-9 Positions and Their Behaviour towards Sialidase from Influenza Virus and Pig Liver Membrane. Carbohydr. Res. 2001, 330(1), 31–41. DOI: 10.1016/S0008-6215(00)00267-6
Von Itzstein, M.; Wu, W.-Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; Colman, P.M.; Varghese, J.N.; Ryan, D.M.; Woods, J.M.; Bethell, R.C.; Hotham, V.J.; Cameron, J.M.; Penn, C.R. Rational Design of Potent Sialidase-Based Inhibitors of Influenza Virus Replication. Nature 1993, 363(6428), 418–423. DOI: 10.1038/363418a0
Chandler, M.; Bamford, M.J.; Conroy, R.; Lamont, B.; Patel, B.; Patel, V.K.; Steeples, I.P.; Storer, R.; Weir, N.G.; Wright, M.; Williamson, C. Synthesis of the Potent Influenza Neuraminidase Inhibitor 4-Guanidino Neu5Ac2en. X-Ray Molecular Structure of 5-Acetamido-4-Amino-2,6-Anhydro-3,4,5-Trideoxy-D-Erythro-L-Gluco-Nononic Acid. J. Chem. Soc. Perkin 1995, 1(9),
Art. No: 1173. DOI: 10.1039/p19950001173
Wang‐Jairaj, J.; Miller, I.; Joshi, A.; Jayabalan, T.; Peppercorn, A.; Zammit‐Tabona, P.; Oliver, A. Zanamivir Aqueous Solution in Severe Influenza: A Global Compassionate Use Program, 2009–2019. Influenza Other Respir. Viruses 2022, 16(3), 542–551. DOI: 10.1111/irv.12947
Schauer, R.; Srinivasan, G.V.; Wipfler, D.; Kniep, B.; Schwartz-Albiez, R. O-Acetylated Sialic Acids and Their Role in Immune Defense. In The Molecular Immunology of Complex Carbohydrates-3; Wu, A. M., Ed.; Springer, US, Boston, 2011; Volume 705, pp 525–548. DOI: 10.1007/978-1-4419-7877-6_28
Cheeseman, J.; Badia, C.; Elgood-Hunt, G.; Gardner, R. A.; Trinh, D.N.; Monopoli, M. P.; Kuhnle, G.; Spencer, D.I.R.; Osborn, H.M.I. Elevated Concentrations of Neu5Ac and Neu5,9Ac2 in Human Plasma: Potential Biomarkers of Cardiovascular Disease. Glycoconj. J. 2023, 40(6), 645–654. DOI: 10.1007/s10719-023-10138-3
Klein, A.; Diaz, S.; Ferreira, I.; Lamblin, G.; Roussel, P.; Manzi, A.E. New Sialic Acids from Biological
Sources Identified by a Comprehensive and Sensitive Approach: Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) of SIA Quinoxalinones. Glycobiology 1997, 7(3), 421–432. DOI: 10.1093/glycob/7.3.421
Schauer, R. Sialic Acids: Fascinating Sugars in Higher Animals and Man. Zoology 2004, 107(1), 49–64. DOI: 10.1016/j.zool.2003.10.002
Huang, X.; Li, Z.; Xiaobo, Z.; Shi, J.; Tahir, H.E.; Xu, Y.; Zhai, X.; Hu, X. Geographical Origin Discrimination of Edible Bird’s Nests Using Smart Handheld Device Based on Colorimetric Sensor Array. J. Food Meas. Charact. 2020, 14(1), 514–526. DOI: 10.1007/s11694-019-00251-z
Ling, J.W.A.; Chang, L.S.; Babji, A.S.; Lim, S.J. Recovery of Value‐added Glycopeptides from Edible Bird’s Nest (EBN) Co‐products: Enzymatic Hydrolysis, Physicochemical Characteristics and Bioactivity. J.
Sci. Food Agric. 2020, 100(13), 4714–4722. DOI: 10.1002/jsfa.10530
Wang, H.-J.; Hua, C.-Z.; Ruan, L.-L.; Hong, L.-Q.; Sheng, S.-Q.; Shang, S.-Q. Sialic Acid and Iron Content
in Breastmilk of Chinese Lactating Women. Indian Pediatr. 2017, 54(12), 1029–1031. DOI: 10.1007/s13312-017-1206-z
Juneja, L.R.; Koketsu, M.; Nishimoto, K.; Kim, M.; Yamamoto, T.; Itoh, T. Large-Scale Preparation of Sialic Acid from Chalaza and Egg-Yolk Membrane. Carbohydr. Res. 1991, 214(1), 179–186. DOI: 10.1016/S0008-6215(00)90540-8
Koketsu, M.; Juneja, L.R.; Kawanami, H.; Kim, M.; Yamamoto, T. Preparation of N-Acetylneuraminic Acid from Delipidated Egg Yolk. Glycoconj. J. 1992, 9(2), 70–74. DOI: 10.1007/BF00731701
Sun, X.; Gänzle, M.; Field, C.J.; Wu, J. Effect of Proteolysis on the Sialic Acid Content and Bifidogenic Activity of Ovomucin Hydrolysates. Food Chem. 2016, 212, 78–86. DOI: 10.1016/j.foodchem.2016.05.153
Tang, K.-T.; Liang, L.-N.; Cai, Y.-Q.; Mou, S.-F. Determination of Sialic Acid in Milk and Products Using High Performance Anion-Exchange Chromatography Coupled with Pulsed Amperometric Detection. Chin.
J. Anal. Chem. 2008, 36(11), 1535–1538. DOI: 10.1016/S1872-2040(09)60005-0
Wang, X.; Ma, T.; Yu, H.; Chen, Z.; Zhu, B.; Chen, W.; Sun, S.; Li, Z. Purification of Sialoglycoproteins from Bovine Milk Using Serotonin-Functionalized Magnetic Particles and Their Application against Influenza A
Virus. Food Funct. 2020, 11(8), 6911–6920. DOI: 10.1039/D0FO01447H
Suzuki, T.; Horiike, G.; Yamazaki, Y.; Kawabe, K.; Masuda, H.; Miyamoto, D.; Matsuda, M.; Nishimura, S.-I.; Yamagata, T.; Ito, T.; Kida, H.; Kawaoka, Y.; Suzuki, Y. Swine Influenza Virus Strains Recognize Sialylsugar Chains Containing the Molecular Species of Sialic Acid Predominantly Present in the Swine Tracheal Epithelium. FEBS Lett. 1997, 404(2–3), 192–196. DOI: 10.1016/S0014-5793(97)00127-0
Sroga, J.M.; Wu, D.H.; Ma, F.; Tecle, E.; Ressler, I.B.; Maxwell, R.; Ferrari, R.; Whigham, L.; Gagneux, P.; Lindheim, S.R. Detection of the Dietary Xenoglycan N-Glycolylneuraminic Acid (Neu5Gc) and Anti-Neu5Gc Antibodies within Reproductive Tracts of Male and Female Infertility Subjects. Clin. Obstet. Gynecol. Reprod. Med. 2015, 1(3), 72–78. DOI: 10.15761/COGRM.1000120
Peri, S.; Kulkarni, A.; Feyertag, F.; Berninsone, P.M.; Alvarez-Ponce, D. Phylogenetic Distribution of CMP-Neu5Ac Hydroxylase (CMAH), the Enzyme Synthetizing the Proinflammatory Human Xenoantigen Neu5Gc. Genome Biol. Evol. 2018, 10(1), 207–219. DOI: 10.1093/gbe/evx251
Nemanichvili, N.; Spruit, C.M.; Berends, A.J.; Gröne, A.; Rijks, J.M.; Verheije, M.H.; De Vries, R.P. Wild and Domestic Animals Variably Display Neu5Ac and Neu5Gc Sialic Acids. Glycobiology 2022, 32(9), 791–802. DOI: 10.1093/glycob/cwac033
Alisson-Silva, F.; Kawanishi, K.; Varki, A. Human
Risk of Diseases Associated with Red Meat Intake: Analysis of Current Theories and Proposed Role for Metabolic Incorporation of a Non-Human Sialic Acid. Mol. Aspects Med. 2016, 51, 16–30. DOI: 10.1016/j.mam.2016.07.002
Yao, H. L.; Conway, L. P.; Wang, M. M.; Huang, K.; Liu, L.; Voglmeir, J. Quantification of Sialic Acids in Red Meat by UPLC-FLD Using Indoxylsialosides as Internal Standards. Glycoconj. J. 2016, 33(2), 219–226. DOI: 10.1007/s10719-016-9659-1
Perota, A.; Galli, C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front. Immunol. 2019, 10, Art. No: 2396. DOI: 10.3389/fimmu.2019.02396
Diaz, S. L.; Padler-Karavani, V.; Ghaderi, D.; Hurtado-Ziola, N.; Yu, H.; Chen, X.; Brinkman-Van Der Linden, E. C. M.; Varki, A.; Varki, N. M. Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products. PLoS ONE 2009, 4(1), Art. No: e4241. DOI: 10.1371/journal.pone.0004241
Shewell, L.K.; Wang, J.J.; Paton, J.C.; Paton, A.W.; Day, C.J.; Jennings, M.P. Detection of N-Glycolylneuraminic Acid Biomarkers in Sera from Patients with Ovarian Cancer Using an Engineered N-Glycolylneuraminic Acid-Specific Lectin SubB2M. Biochem. Biophys. Res. Commun. 2018, 507(1–4), 173–177. DOI: 10.1016/j.bbrc.2018.11.001
Hedlund, M.; Padler-Karavani, V.; Varki, N.M.; Varki, A. Evidence for a Human-Specific Mechanism for Diet and Antibody-Mediated Inflammation in Carcinoma Progression. Proc. Natl. Acad. Sci. 2008, 105(48), 18936–18941. DOI: 10.1073/pnas.0803943105
Samraj, A.N.; Läubli, H.; Varki, N.; Varki, A. Involvement of a Non-Human Sialic Acid in
Human Cancer. Front. Oncol. 2014, 4, Art. No: 33. DOI: 10.3389/fonc.2014.00033
Blanco, R.; Domínguez, E.; Morales, O.; Blanco, D.; Martínez, D.; Rengifo, C.E.; Viada, C.; Cedeño, M.; Rengifo, E.; Carr, A. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences. Pathol. Res. Int. 2015, 2015, 1–12. DOI: 10.1155/2015/132326
Hayashi, N.; Chiba, H.; Kuronuma, K.; Go, S.; Hasegawa, Y.; Takahashi, M.; Gasa, S.; Watanabe, A.; Hasegawa, T.; Kuroki, Y.; Inokuchi, J.; Takahashi, H. Detection of N ‐glycolyated Gangliosides in Non‐
small‐cell Lung Cancer Using GMR 8 Monoclonal Antibody. Cancer Sci. 2013, 104(1), 43–47. DOI: 10.1111/cas.12027
Wang, J.; Shewell, L.K.; Day, C.J.; Jennings, M.P.
N-Glycolylneuraminic Acid as a Carbohydrate Cancer Biomarker. Transl. Oncol. 2023, 31, Art. No: 101643. DOI: 10.1016/j.tranon.2023.101643
Tangvoranuntakul, P.; Gagneux, P.; Diaz, S.; Bardor, M.; Varki, N.; Varki, A.; Muchmore, E. Human Uptake and Incorporation of an Immunogenic Nonhuman Dietary Sialic Acid. Proc. Natl. Acad. Sci. 2003, 100(21), 12045–12050. DOI: 10.1073/pnas.2131556100
Bousquet, P.A.; Sandvik, J.A.; Jeppesen Edin, N.F.; Krengel, U. Hypothesis: Hypoxia Induces de Novo Synthesis of NeuGc Gangliosides in Humans through CMAH Domain Substitute. Biochem. Biophys. Res. Commun. 2018, 495(1), 1562–1566. DOI: 10.1016/j.bbrc.2017.11.183
Guerrero-Flores, G.N.; Pacheco, F.J.; Boskovic, D.S.; Pacheco, S.O.S.; Zhang, G.; Fraser, G.E.; Miles, F.L. Sialic Acids Neu5Ac and KDN in Adipose Tissue Samples from Individuals Following Habitual Vegetarian or Non-Vegetarian Dietary Patterns. Sci. Rep. 2023, 13(1), Art. No: 12593. DOI: 10.1038/s41598-023-38102-z