1. Kanak, S.; Krzemińska, B.; Celiński, R.; Bakalczuk, M.; Dos Santos Szewczyk, K. Phenolic composition and antioxidant activity of Alchemilla Species. Plants 2022, 11, Art. No: 2709. DOI: 10.3390/plants11202709
2. Denev, P.; Kratchanova, M.; Ciz, M.; Lojek, A.; Vasicek, O.; Blazheva, D.; Nedelcheva, P.; Vojtek, L.; Hyrsl, P. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim. Pol. 2014, 61, 359–367, DOI: 10.18388/abp.2014_1907
3. Jurić, T.; Katanić Stanković, J.S.; Rosić, G.; Selaković, D.; Joksimović, J.; Mišić, D.; Stanković, V.; Mihailović, V. Protective effects of Alchemilla vulgaris L. extracts against cisplatin-induced toxicological alterations in rats. South African J. Bot. 2020, 128, 141–151, DOI: 10.1016/j.sajb.2019.09.010
4. Neagu, E.; Paun, G.; Albu, C.; Radu, G.L. Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J. Taiwan Inst. Chem. Eng. 2015, 52, 1–6, DOI:10.1016/j.jtice.2015.01.026
5. Valcheva-Kuzmanova, S.; Denev, P.; Eftimov, M.; Georgieva, A.; Kuzmanova, V.; Kuzmanov, A.; Kuzmanov, K.; Tzaneva, M. Protective effects of Aronia melanocarpa juices either alone or combined with extracts from Rosa canina or Alchemilla vulgaris in a rat model of indomethacin-induced gastric ulcers. Food Chem. Toxicol. 2019, 132, Art. No: 110739, DOI: 10.1016/j.fct.2019.110739
6. Nikolova, M.; Dincheva, I.; Vitkova, A.; Badjakov, I. Phenolic acids and free radical scavenging activity of Bulgarian endemic - Alchemilla jumrukczalica Pawl. Planta Med. 2011, 77, 10–13, DOI: 10.1055/s-0031-1282722
7. El-Hadidy, E.M.; Refat, O.G.; Halaby, M.S.; Elmetwaly, E.M.; Omar, A.A. Effect of Lion’s Foot (Alchemilla vulgaris) on liver and renal functions in rats induced by CCl4. Food Nutr. Sci. 2018, 09, 46–62, DOI: 10.4236/fns.2018.91004
8. Ibrahim, O.H.M.; Abo-Elyousr, K.A.M.; Asiry, K.A.; Alhakamy, N.A.; Mousa, M.A.A. Phytochemical characterization, antimicrobial activity and in vitro antiproliferative potential of Alchemilla vulgaris Auct root extract against prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2) cancer cell lines. Plants 2022, 11(16), Art. No: 2140, DOI: 10.3390/plants11162140
9. Duckstein, S.M.; Lotter, E.M.,;Meyer, U.; Lindequist, U. Phenolic constituents from Alchemilla vulgaris L. Zeitschrift für Naturforsch. C 2012, 67, 529–540. DOI: 10.5560/ZNC.2012.67c0529
10. Ilić-Stojanović, S.; Nikolić, V.; Kundaković, T.; Savić, I.; Savić-Gajić, I.; Jocić, E.; Nikolić, L. Thermosensitive hydrogels for modified release of ellagic acid obtained from Alchemilla vulgaris L. extract. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 553–563, DOI: 10.1080/00914037.2017.1354202
11. Møller, C.; Hansen, S.H.; Cornett, C. Characterisation of tannin-containing herbal drugs by HPLC. Phytochem. Anal. 2009, 20, 231–239, DOI: 10.1002/pca.1119
12. Ravetto Enri, S.; Falla, N.M.; Demasi, S.; Bianchi, D.M.; Squadrone, S.; Lombardi, G.; Scariot, V. Exploring the potential of wild leafy vegetables widespread in European Alps as functional food. J. Agric. Food Res. 2024, 18, Art. No: 101368. DOI: 10.1016/j.jafr.2024.101368
13. Szewczyk, K.D.S.; Pietrzak, W.; Klimek, K.; Grzywa‐celińska, A.; Celiński, R.; Gogacz, M. LC‐ESI‐MS/MS Identification of biologically active phenolics in different extracts of Alchemilla acutiloba Opiz. Molecules 2022, 27, Art. No:621 DOI:10.3390/molecules27030621
14. Tasić-Kostov, M.; Arsić, I.; Pavlović, D.; Stojanović, S.; Najman, S.; Naumović, S.; Tadić, V. Towards a modern approach to traditional use: In vitro and in vivo evaluation of Alchemilla vulgaris L. Gel wound healing potential. J. Ethnopharmacol. 2019, 238,
Art. No:111789 DOI:10.1016/j.jep.2019.03.016
15. Condrat, D.; Mosoarca, C.; Zamfir, A.D.; Crişan, F.; Szabo, M.R.; Lupea, A.X. Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray Ionization Mass Spectrometry and High Performance Liquid Chromatography. Cent. Eur. J. Chem. 2010, 8, 530–535, DOI:10.2478/s11532-010-0012-4
16. Şeker Karatoprak, G.; İlgün, S.; Koşar, M. Phenolic composition, anti-inflammatory, antioxidant, and antimicrobial activities of Alchemilla mollis (Buser) Rothm. Chem. Biodivers. 2017, 14, Art. No: 1700150, DOI:10.1002/cbdv.201700150
17. Snarska, J.; Jakimiuk, K.; Strawa, J.W.; Tomczyk, T.M.; Tomczykowa, M.; Piwowarski, J.P.; Tomczyk, M. A Comprehensive Review of Pedunculagin: Sources, Chemistry, Biological and Pharmacological Insights. Int. J. Mol. Sci. 2024, 25, Art. No: 11511,
DOI: 10.3390/ijms252111511
18. Özbilgin, S.; Özbek, H.; Kirmizi, N.İ.; Ergene Öz, B.; Kurtul, E.; Özrenk, B.C.; Saltan İşcan, G.; Bahadir Acikara, Ö. Evaluation of the antidiabetic activity of Alchemilla persica Rothm. in mice with diabetes induced by alloxan. Turkish J. Pharm. Sci. 2019, 16, 261–264, DOI: 10.4274/tjps.galenos.2018.65487
19. Suručić, R.; Radović Selgrad, J.; Kundaković-Vasović, T.; Lazović, B.; Travar, M.; Suručić, L.; Škrbić, R. In silico and in vitro studies of Alchemilla viridiflora Rothm—polyphenols’ potential for inhibition of SARS-CoV-2 internalization. Molecules 2022, 27,
Art. No: 5174, DOI:10.3390/molecules27165174
20. Geiger, C.; Scholz, E.; Rimpler, H. Ellagitannins from Alchemilla xanthochlora and Potentilla erecta. Planta Med. 1994, 60, 384–385, DOI: 10.1055/s-2006-959510
21. Öz, B.E.; Ilhan, M.; Özbilgin, S.; Akkol, E.K.; Acıkara, Ö.B.; Saltan, G.; Keleş, H.; Süntar, I. Effects of Alchemilla mollis and Alchemilla persica on the wound healing process. Bangladesh J. Pharmacol. 2016, 11, 577–584, DOI: 10.3329/bjp.v11i3.26024
22. Radović, J.; Suručić, R.; Niketić, M.; Kundaković-Vasović, T. Alchemilla viridiflora Rothm.: the potent natural inhibitor of angiotensin I-converting enzyme. Mol. Cell. Biochem. 2022, 477, 1893–1903, DOI: 10.1007/s11010-022-04410-7
23. Jelača, S.; Dajić-Stevanović, Z.; Vuković, N.; Kolašinac, S.; Trendafilova, A.; Nedialkov, P.; Stanković, M.; Tanić, N.; Tanić, N.T.; Acović, A.; et al. Beyond traditional use of Alchemilla vulgaris. Molecules 2022, 27 (23), Art. No: 8113, DOI:10.3390/molecules27238113
24. Grochowski, D.M.; Skalicka-Woźniak, K.; Orhan, I.E.; Xiao, J.; Locatelli, M.; Piwowarski, J.P.; Granica, S.; Tomczyk, M. A comprehensive review of agrimoniin. Ann. N. Y. Acad. Sci. 2017, 1401, 166–180, DOI: 10.1111/nyas.13421
25. Ghedira, K.; Goetz, P.; Le Jeune, R. Alchemilla vulgaris L.: Alchémille (Rosaceae). Phytotherapie 2012, 10, 263–266, DOI:10.1007/s10298-012-0719-9
26. Renda, G.; Özel, A.; Barut, B.; Korkmaz, B.; Šoral, M.; Kandemir, Ü.; Liptaj, T. Bioassay guided isolation of active compounds from Alchemilla barbatiflora Juz. Rec. Nat. Prod. 2018, 12, 76–85, DOI: 10.25135/rnp.07.17.07.117
27. Karaoglan, E.S.; Bayir, Y.; Albayrak, A.; Toktay, E.; Ozgen, U.; Kazaz, C.; Kahramanlar, A.; Cadirci, E. Isolation of major compounds and gastroprotective activity of Alchemilla caucasica on indomethacin induced gastric ulcers in rats. Eurasian J. Med. 2020, 52, 249–253, DOI:10.5152/eurasianjmed.2020.19243
28. Şeker Karatoprak, G.; İlgün, S.; Koşar, M. Phenolic composition, anti-inflammatory, antioxidant, and antimicrobial activities of Alchemilla mollis (Buser) Rothm. Chem. Biodivers. 2017, 14, Art. No: 1700150 DOI:10.1002/cbdv.201700150
29. Kurtul, E.; Eryilmaz, M.; Sarialtin, S.Y.; Teki̇n, M.; Acikara, Ö.B.; Çoban, T. Bioactivities of Alchemilla mollis, Alchemilla persica and their active constituents. Brazilian J. Pharm. Sci. 2022, 58, Art. No: 18373. DOI: 10.1590/s2175-97902022e18373
30. Mladenova, S.G.; Vasileva, L. V.; Savova, M.S.; Marchev, A.S.; Tews, D.; Wabitsch, M.; Ferrante, C.; Orlando, G.; Georgiev, M.I. Anti-adipogenic effect of Alchemilla monticola is mediated via PI3K/AKT signaling inhibition in human adipocytes. Front. Pharmacol. 2021, 12, Art. No: 707507. DOI:10.3389/fphar.2021.707507
31. Shrivastava, R.; John, G.W. Treatment of aphthous stomatitis with topical Alchemilla vulgaris in glycerine. Clin. Drug Investig. 2006, 26, 567–573, DOI: 10.2165/00044011-200626100-00003
32. Felser, C.; Schimmer, O. Flavonoid glycosides from Alchemilla speciosa. Planta Med. 1999, 65, 668–670, DOI: 10.1055/s-2006-960845
33. Mandrone, M.; Coqueiro, A.; Poli, F.; Antognoni, F.; Choi, Y.H. Identification of a collagenase-inhibiting flavonoid from Alchemilla vulgaris using NMR-based metabolomics. Planta Med. 2018, 84, 941–946, DOI:10.1055/a-0630-2079
34. Vlaisavljević, S.; Jelača, S.; Zengin, G.; Mimica-Dukić, N.; Berežni, S.; Miljić, M.; Stevanović, Z.D. Alchemilla vulgaris Agg. (Lady’s Mantle) from Central Balkan: antioxidant, anticancer and enzyme inhibition properties. RSC Adv. 2019, 9, 37474–37483, DOI: 10.1039/c9ra08231j
35. Ahn, H.S.; Kim, H.J.; Na, C.; Jang, D.S.; Shin, Y.K.; Lee, S.H. The protective effect of Adenocaulon himalaicum Edgew. and its bioactive compound neochlorogenic acid against UVB-induced skin damage in human dermal fibroblasts and epidermal keratinocytes. Plants 2021, 10(8), Art. No: 1669,
DOI: 10.3390/plants10081669
36. Kang, W.; Choi, D.; Park, T. Decanal protects against UVB-induced photoaging in human dermal fibroblasts via the camp pathway. Nutrients 2020, 12,
Art. No:1214 DOI:10.3390/nu12051214
37. Larka, R.; Kiran, M.S.; Korrapati, P.S. Collagen scaffold reinforced with furfural for wound healing application. Materials Letters 2022, 315, Art. No: 131956 DOI:10.1016/j.matlet.2022.131956
38. Cheng, H.M.; Chen, F.Y.; Li, C.C.; Lo, H.Y.; Liao, Y.F.; Ho, T.Y.; Hsiang, C.Y. Oral administration of vanillin improves imiquimod-induced psoriatic skin inflammation in mice. J. Agric. Food Chem. 2017, 65, 10233–10242, DOI:10.1021/acs.jafc.7b04259
39. Dubel, N.; Grytsyk, L.; Kovaleva, A.; Grytsyk, A.; Коshovyi, О. Research in components of essential oils from flowers and leaves of the genus Alchemilla L. Species. Sci. Pharm. Sci. 2022, 2022, 34–39, DOI:10.15587/2519-4852.2022.259059
40. Huang, Z.R.; Lin, Y.K.; Fang, J.Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 2009, 14(1), 540–554,
DOI: 10.3390/molecules14010540
41. Wolski, T.; Kędzia, B. Farmakoterapia skóry. Cz. 2. Przenikanie substancji przez skórę. Pharmacotherapy of skin. Part 2. Permeability of substances into the skin. Postępy Fitoterapii, 2019, 2, 154-158, DOI: 10.25121/PF.2019.20.2.154
42. https://powo.science.kew.org (data dostępu 30.11.2024).
43. Hoffmann, J.; Casetti, F.; Bullerkotte, U.; Haarhaus, B.; Vagedes, J.; Schempp, C.M.; Wölfle, U. Anti-inflammatory effects of agrimoniin-enriched fractions of Potentilla erecta. Molecules 2016, 21, Art. No:792, DOI:10.3390/molecules21060792
44. Majma Sanaye, P.; Mojaveri, M.R.; Ahmadian, R.; Sabet Jahromi, M.; Bahramsoltani, R. Apigenin and its dermatological applications: a comprehensive review. Phytochemistry 2022, 203, Art. No: 113390, DOI: 10.1016/j.phytochem.2022.113390
45. Zhao, D.; Shi, Y.; Dang, Y.; Zhai, Y.; Ye, X. Daidzein stimulates collagen synthesis by activating the TGF-β/Smad signal pathway. Australas. J. Dermatol. 2015, 56, e7–e14, DOI: 10.1111/ajd.12126
46. Falchero, L.; Coppa, M.; Esposti, S.; Tava, A. Essential oil composition of Alchemilla alpina L. Em. Buser from Western Alpine Pastures. J. Essent. Oil Res. 2008, 20, 542–545, DOI: 10.1080/10412905.2008.9700084
47. Nisar, M.F.; Liu, T.; Wang, M.; Chen, S.; Chang, L.; Karisma, V.W.; Weixu; Diao, Q.; Xue, M.; Tang, X.; et al. Eriodictyol protects skin cells from UVA irradiation-induced photodamage by inhibition of the MAPK signaling pathway. J. Photochem. Photobiol. B Biol. 2022, 226, Art. No: 112350. DOI:10.1016/j.jphotobiol.2021.112350
48. Wei, H.; Saladi, R.; Lu, Y.; Wang, Y.; Palep, S.R.; Moore, J.; Phelps, R.; Shyong, E.; Lebwohl, M.G. Isoflavone genistein: photoprotection and clinical implications in dermatology. J. Nutr. 2003, 133, 3811S-3819S. DOI:10.1093/jn/133.11.3811s
49. Lu, Z.; Xia, Q.; Cheng, Y.; Lu, Q.; Li, Y.; Zeng, N.; Luan, X.; Li, Y.; Fan, L.; Luo, D. Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. J. Cosmet. Dermatol. 2022, 21, 6261–6269. DOI:10.1111/jocd.15230
50. Goenka, S.; Ceccoli, J.; Simon, S.R. Anti-melanogenic activity of ellagitannin casuarictin in B16F10 mouse melanoma cells. Nat. Prod. Res. 2021, 35, 1830–1835. DOI:10.1080/14786419.2019.1636242
51. Yoshino, S.; Mitoma, T.; Tsuruta, K.; Todo, H.; Sugibayashi, K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm. Dev. Technol. 2014, 19, 395–400. DOI: 10.3109/10837450.2013.788512
52. Liu, C.; Liu, H.; Lu, C.; Deng, J.; Yan, Y.; Chen, H.; Wang, Y.; Liang, C.L.; Wei, J.; Han, L.; et al. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin. Exp. Immunol. 2019, 198, 403–415. DOI:10.1111/cei.13363
53. Tsang, M.S.M.; Jiao, D.; Chan, B.C.L.; Hon, K.L.; Leung, P.C.; Lau, C.B.S.; Wong, E.C.W.; Cheng, L.; Chan, C.K.M.; Lam, C.W.K.; et al. Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules 2016, 21, Art. No: 519. DOI: 10.3390/molecules21040519
54. Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. DOI: 10.1111/ics.12471
55. Bae, J.Y.; Choi, J.S.; Kang, S.W.; Lee, Y.J.; Park, J.; Kang, Y.H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol. 2010, 19, 182–190. DOI: 10.1111/j.1600-0625.2009.01044.x
56. Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018, 31, 332–336. DOI:10.1159/000491755
57. Alonso, C.; Martí, M.; Barba, C.; Lis, M.; Rubio, L.; Coderch, L. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid. J. Photochem. Photobiol. B Biol. 2016, 156, 50–55, DOI: 10.1016/j.jphotobiol.2016.01.014
58. Song, H.S.; Park, T.W.; Sohn, U.D.; Shin, Y.K.; Choi, B.C.; Kim, C.J.; Sim, S.S. The effect of caffeic acid on wound healing in skin-incised mice. Korean J. Physiol. Pharmacol. 2008, 12, 343–347. DOI: 10.4196/kjpp.2008.12.6.343
59. Saija, A.; Tomaino, A.; Lo Cascio, R.; Trombetta, D.; Proteggente, A.; De Pasquale, A.; Uccella, N.; Bonina, F. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric. 1999, 79, 476–480. DOI:10.1002/(SICI)1097-0010(19990301)79:3<476::AID-JSFA270>3.0.CO;2-L
60. Jacobs, S.W.; Culbertson, E.J. Effects of topical mandelic acid treatment on facial skin viscoelasticity. Facial Plast. Surg. 2018, 34, 651–656. DOI:10.1055/s-0038-1676048
61. Boo, Y.C. P-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants 2019, 8, Art. No: 275 .DOI:10.3390/antiox8080275
62. Shin, S.; Cho, S.H.; Park, D.; Jung, E. Anti-skin aging properties of protocatechuic acid in vitro and in vivo. J. Cosmet. Dermatol. 2020, 19, 977–984. DOI:10.1111/jocd.13086
63. Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of rosmarinic acid on atopic dermatitis. J. Dermatol. 2008, 35, 768–771. DOI: 10.1111/j.1346-8138.2008.00565.x
64. Arif, T. Salicylic acid as a peeling agent: a comprehensive review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 455–461. DOI: 10.2147/CCID.S84765
65. Jeon, J.; Sung, J.; Lee, H.; Kim, Y.; Jeong, H.S.; Lee, J. Protective activity of caffeic acid and sinapic acid against UVB-induced photoaging in human fibroblasts. J. Food Biochem. 2019, 43, Art. No: e12701. DOI:10.1111/jfbc.12701
66. Na, E.J.; Yang, H.O.; Choi, Y.E.; Han, H.S.; Rhie, S.J.; Ryu, J.Y. Anti-inflammatory and collagen production effect of syringic acid on human keratinocyte (HaCaT) damaged by ultraviolet B. Asian J. Beauty Cosmetol. 2018, 16, 523–531. DOI:10.20402/ajbc.2018.0245
67. Erden Inal, M.; Kahraman, A.; Köken, T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Exp. Dermatol. 2001, 26, 536–539. DOI:10.1046/j.1365-2230.2001.00884.x
68. Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. BioFactors 2021, 47, 170–180. DOI:10.1002/biof.1699
69. Hou, D.D.; Gu, Y.J.; Wang, D.C.; Niu, Y.; Xu, Z.R.; Jin, Z.Q.; Wang, X.X.; Li, S.J. Therapeutic effects of myricetin on atopic dermatitis in vivo and in vitro. Phytomedicine 2022, 102, Art. No: 154200. DOI:10.1016/j.phymed.2022.154200
70. Yong, H.J.; Ahn, J.J. Antioxidant and skin protection effect of morin upon UVA exposure. Biomed. Dermatol. 2018, 2, Art. No: 12. DOI: 10.1186/s41702-018-0026-7
71. Al-Roujayee, A.S. Naringenin improves the healing process of thermally-induced skin damage in rats. J. Int. Med. Res. 2017, 45, 570–582. doi:10.1177/0300060517692483
72. Ren, X.; Shi, Y.; Zhao, D.; Xu, M.; Li, X.; Dang, Y.; Ye, X. Naringin protects ultraviolet B-induced skin damage by regulating P38 MAPK signal pathway. J. Dermatol. Sci. 2016, 82, 106–114. doi: 10.1016/j.jdermsci.2015.12.008
73. Kim, M.; Yin, J.; Hwang, I.H.; Park, D.H.; Lee, E.K.; Kim, M.J.; Lee, M.W. Anti-acne vulgaris effects of pedunculagin from the leaves of Quercus mongolica by anti-inflammatory activity and 5α-reductase inhibition. Molecules 2020, 25 (9), Art. No: 2154. doi: 10.3390/molecules25092154.
74. Lee, O.; Choi, M.; Ha, S.; Lee, G.; Kim, J.; Park, G.; Lee, M.; Choi, Y.; Kim, M.; Oh, C.H. Effect of pedunculagin investigated by non-invasive evaluation on atopic-like dermatitis in NC/Nga Mice. Ski. Res. Technol. 2010, 16, 371–377. DOI: 10.1111/j.1600-0846.2010.00443.x
75. Takahashi, T.; Kamimura, A.; Kagoura, M.; Toyoda, M.; Morohashi, M. Investigation of the topical application of procyanidin oligomers from apples to identify their potential use as a hair‐growing agent. J. Cosmet. Dermatol. 2005, 4, 245–249. DOI:10.1111/j.1473-2165.2005.00199.x
76. Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J. Cosmet. Laser Ther. 2019, 21(2), 84-90. DOI: 10.1080/14764172.2018.1469767
77. McBride, P.T.; Clark, L.; Krueger, G.G. Evaluation of triacontanol-containing compounds as anti-inflammatory agents using guinea pig models. J. Invest. Dermatol. 1987, 89, 380–383. DOI: 10.1111/1523-1747.ep12471763
78. Jouravel, G.; Guénin, S.; Bernard, F.X.; Elfakir, C.; Bernard, P.; Himbert, F. New biological activities of Lythrum salicaria L.: effects on keratinocytes, reconstructed epidermis and reconstructed skins, applications in dermo-cosmetic sciences. Cosmetics 2017, 4 (4), Art. No: 52 DOI: 10.3390/cosmetics4040052