1. World Health Organization (March 2020). ‘’WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020”. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. (accessed on 17-10-2024)
2. World Health Organization. WHO COVID-19 dashboard. “COVID-19 Global circulation.” Available online: https://data.who.int/dashboards/covid19. (accessed on 17-10-2024)
3. Trojánek, M.; Grebenyuk, V.; Herrmannová, K.; Nečas, T.; Gregorová, J.; Kucbel, M.; et al. Novel coronavirus (SARS-CoV-2) and COVID-19. Cas. Lek. Cesk. 2020, 159(2), 55-66. Available online: https://www.prolekare.cz/casopisy/casopis-lekaru-ceskych/2020-2-6/novy-koronavirus-sars-cov-2-a-onemocneni-covid-19-122272
4. Lamer, M.; Haagmans, B. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270-284. DOI: 10.1038/s41579-022-00713-0
DOI: https://doi.org/10.1038/s41579-022-00713-0
5. Wang, Y.; Grunewald, M.; Perlman, S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. In: Coronaviruses. Methods Mol Bio,. Maier, H., Bickerton, E. (eds). Humana, New York, NY. 2020, vol 2203, 1-29. DOI: 10.1007/978-1-0716-0900-2_1
DOI: https://doi.org/10.1007/978-1-0716-0900-2_1
6. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Ann. Rev. Virol. 2016, 3(1), 237-261. DOI: 10.1146/annurev-virology-110615-042301
DOI: https://doi.org/10.1146/annurev-virology-110615-042301
7. Sharma, B.; Ravindra, P. Immune responses to infection and covid-19 vaccines. Explor. Immunol. 2022, 2, 648-664. DOI: 10.37349/ei.2022.00074
DOI: https://doi.org/10.37349/ei.2022.00074
8. Farhud, D.; Zokaei, S. A Brief Overview of COVID-19 Vaccines. Iran. J. Public Health 2021, 50(7), 1-6. DOI: 10.18502/ijph.v50i7.6656
DOI: https://doi.org/10.18502/ijph.v50i7.6656
9. Chung, V.; Beiss, V.; Fiering, S.; Steinmetz, N. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS. Nano 2020, 14, 12522−12537. DOI: 10.1021/acsnano.0c07197
DOI: https://doi.org/10.1021/acsnano.0c07197
10. Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. Developing mRNA-vaccine technologies. RNA. Biol. 2012, 9(11), 1319–1330. DOI: 10.4161/rna.22269 9
DOI: https://doi.org/10.4161/rna.22269
11. Szabó, G.; Mahiny, A.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022, 30(5), 1850-1868. DOI: 10.1016/j.ymthe.2022.02.016
DOI: https://doi.org/10.1016/j.ymthe.2022.02.016
12. Naqvia, A.; Fatimab, K.; Mohammada, T.; Fatimac, U.; Singhd, I.; Singhe, A.; et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. BBA Mol. Basis Dis. 2020, 1866 (10), Art. No: 165878. DOI: 10.1016/j.bbadis.2020.165878
DOI: https://doi.org/10.1016/j.bbadis.2020.165878
13. Young, M.; Crook, H.; Scott, J.; Edison, P. Covid-19: virology, variants, and vaccines. Bmj Med. 2022,1(1), Art. No: e000040. DOI: 10.1136/bmjmed-2021-000040
DOI: https://doi.org/10.1136/bmjmed-2021-000040
14. Masters, P. The molecular biology of coronaviruses. Adv. Virus Res. 2006, 66, 193–292. DOI: 10.1016%2FS0065-3527(06)66005-3.
DOI: https://doi.org/10.1016/S0065-3527(06)66005-3
15. Jungreis, I.; Sealfon, R.; Kellis, M. SARS-CoV-2 gene content and COVID-19 mutation Impact by comparing 44 Sarbecovirus genomes. Nat. Commun. 2021,12, 1-20. DOI: 10.1038/s41467-021-22905- 7
DOI: https://doi.org/10.1038/s41467-021-22905-7
16. Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020, 588, 498–502. DOI: 10.1038/s41586-020-2665-2
DOI: https://doi.org/10.1038/s41586-020-2665-2
17. Huang, Y.; Yang, C.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. DOI: 10.1038/s41401-020-0485-4
DOI: https://doi.org/10.1038/s41401-020-0485-4
18. Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020, 367(6485), 1444-1448. DOI: 10.1126/science.abb2762
DOI: https://doi.org/10.1126/science.abb2762
19. Abdulla, A.; Al-Bashir, S.; Alzoubi, H.; Al-Salih, N.; Aldamen, A.; Abdulazeez, A. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023, 12(2), Art. No: 329. DOI: 10.3390/pathogens12020329 .
DOI: https://doi.org/10.3390/pathogens12020329
20. Szymczak, A.; Jędruchniewicz, N.; Torelli, A.; Kaczmarzyk-Radka, A.; Coluccio, R.; Kłak, M.; et al. Antibodies specific to SARS-CoV-2 proteins N, S and E in COVID-19 patients in the normal population and in historical samples. J.Gen. Virol. 2021,102(11), Art. No: 001692. DOI: 10.1099/jgv.0.001692
DOI: https://doi.org/10.1099/jgv.0.001692
21. Primorac, D.; Vrdoljak, K.; Brlek, p.; Pavelic, E.; Molnar, V.; Matisˇic', V.; et al. Adaptive Immune Responses and Immunity to SARS-CoV-2. Front. Immunol. 2022, 13, Art. No: 848582. DOI: 10.3389/fimmu.2022.848582
DOI: https://doi.org/10.3389/fimmu.2022.848582
22. Manna, P.; Reddy, P. Healthy immunity on preventive medicine for combating covid-19. Nutrients 2022, 14(5), Art. No: 1004. DOI: 10.3390/nu14051004
DOI: https://doi.org/10.3390/nu14051004
23. Silva, M.; Ribeiro, L.; Lima, K.; Lirr, L. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front. Immunol. 2022, 13, Art. No: 1001198. DOI: 10.3389/fimmu.2022.1001198
DOI: https://doi.org/10.3389/fimmu.2022.1001198
24. Fenwick, C.; Croxatto, A.; Coste, A.; Pojer, F.; André, C.; Pellaton, C.; et al. Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population Based Seroprevalence Studies. J. Virol. 2021, 95(3), e01828-20. DOI: 10.1128/jvi.01828-20
DOI: https://doi.org/10.1128/JVI.01828-20
25. Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516-527. DOI: 10.1038/s41586-020-2798-3
DOI: https://doi.org/10.1038/s41586-020-2798-3
26. Gote, V.; Bolla, P.; Kommineni, N.; Butreddy, A.; Nukala, P.; Palakurthi, S. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023, 24, Art. No: 2700. DOI: 10.3390/ijms24032700
DOI: https://doi.org/10.3390/ijms24032700
27. Karam, M.; Daoud, G. mRNA vaccine: Past, present, future. AJPS 2022, 17(4), 491-522. DOI: 10.1016/j.ajps.2022.05.003
DOI: https://doi.org/10.1016/j.ajps.2022.05.003
28. Rosa, S.; Prazeres, M.; Azevedo, M.; Marques, P. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021, 39(16), 2190–2200. DOI: 10.1016/j.vaccine.2021.03.038.
DOI: https://doi.org/10.1016/j.vaccine.2021.03.038
29. Kwon, H.; Kim, M.; Seo, Y.; Moon, Y. S.; Lee, H. J.; Lee, K.; et al. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its application in regenerative medicine. Biomaterials 2018, 156, 172-193. DOI: 10.1016/j.biomaterials.2017.11.034
DOI: https://doi.org/10.1016/j.biomaterials.2017.11.034
30. Whitley, J.; Zwolinskiz, C.; Dwnis, C.; Maughan, M.; Hayles, L.; Clarke, D.; et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res. 2021, 242, 38-55. DOI: 10.1016/j.trsl.2021.11.009
DOI: https://doi.org/10.1016/j.trsl.2021.11.009
31. Henderson, J.; Ujita, A.; Hill, E.; Yousif-Rosales, S.; Smith, C.; Ko, N.; et al. Cap 1 Messenger RNA Synthesis with Co-transcriptional CleanCap® Analog by In Vitro Transcription. Curr. Protoc. 2021, 1(2), Art. No: e39. DOI: 10.1002/cpz1.39
DOI: https://doi.org/10.1002/cpz1.39
32. Jalkanen, A.; Coleman, S.; Wilusz, J. Determinants and implications of mRNA poly(A) tail size – Dose this protein make my tail look big?. Semin. Cell Dev. Biol. 2014, 34, 24-32. DOI: 10.1016/j.semcdb.2014.05.018
DOI: https://doi.org/10.1016/j.semcdb.2014.05.018
33. Chaudhary, N.; Weissman, D.; Whitehead, K. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. DOI: 10.1038/s41573-021-00283-5
DOI: https://doi.org/10.1038/s41573-021-00283-5
34. Thorn, C.; Sharma, D.; Combs, R.; Bhujbal, S.; Romine, J.; Zheng, X.; et al. The journey of a lifetime — development of Pfizer’s COVID-19 vaccine. Curr. Opin. Biotechnol. 2022, 78, Art. No: 102803. DOI: 10.1016/j.copbio.2022.102803
DOI: https://doi.org/10.1016/j.copbio.2022.102803
35. Tossberg, T.; Esmond, T.; Aune, T. A simplified method to produce mRNAs and functional proteins from synthetic double-stranded DNA templates. Biotechniques 2020, 69(4), 281–288. DOI: 10.2144/btn-2020-0037.
DOI: https://doi.org/10.2144/btn-2020-0037
36. Mey, W.; Schrijver, P.; Autaers, D.; Pfitzer, L.; Fant, B.; Locy, H.; et al. A synthetic DNA template for fast manufacturing of versatile single epitope mRNA. Mol. Ther. Nucleic Acids 2022, 17(29), 943-954. DOI: 10.1016/j.omtn.2022.08.021
DOI: https://doi.org/10.1016/j.omtn.2022.08.021
37. Zhang, F.; Wang, W.; Wang, X.; Dong, H.; Chen, M.; Du, N. RT-IVT method allows multiplex real-time quantification of in vitro transcriptional mRNA production. Commun. Biol. 2023, 6, Art. No: 453. DOI: 10.1038/s42003-023-04830-1
DOI: https://doi.org/10.1038/s42003-023-04830-1
38. Kang, D.; Li, H.; Dong, Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics Advanced Drug Delivery Reviews. Adv. Drug Deliv. Rev. 2023, 199, Art. No: 114961. DOI: 10.1016/j.addr.2023.114961
DOI: https://doi.org/10.1016/j.addr.2023.114961
39. Zhang, J.; Liu, Y.; Li, C.; Xiao, Q.; Zhang, D.; Chen, y.; et al. Recent Advances and Innovations in the Preparation and Purification of In Vitro-Transcribed-mRNA-Based Molecules. Pharmaceutics 2023, 15(9), Art. No: 2182. DOI: 10.3390/pharmaceutics15092182
DOI: https://doi.org/10.3390/pharmaceutics15092182
40. Wang, Y.; Kumari, M.; Chen, G.; Hong, M.; Yuanb, J.; Tsai, J.; Wu, H. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023, 30(1), Art. No: 84. DOI: 10.1186/s12929-023-00977-5
DOI: https://doi.org/10.1186/s12929-023-00977-5
41. Wolf, J.; Dai, N.; Chan, S.; Ivan, R.; Jr. Selective Characterization of mRNA 5′ End-Capping by DNA ProbeDirected Enrichment with Site-Specific Endoribonucleases. ACS Pharmacol. Transl. Sci. 2023, 6(11), 1692-1702. DOI: 10.1021/acsptsci.3c00157.
DOI: https://doi.org/10.1021/acsptsci.3c00157
42. Granados-Riveron, J.; and Aquino-Jarquin, G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed. Pharmacother. 2021, 142, Art. No: 111953. DOI: 10.1016/j.biopha.2021.111953
DOI: https://doi.org/10.1016/j.biopha.2021.111953
43. Nance, K.; Meier, J. L. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent. Sci. 2021, 7(5), 748-756. DOI: 10.1021/acscentsci.1c00197.
DOI: https://doi.org/10.1021/acscentsci.1c00197
44. Xia, X. Detailed Dissection and Critical Evaluation of the Pfizer/BioNTech and Moderna mRNA Vaccines. Vaccines (Basel) 2021, 9(7), Art. No: 734. DOI: 10.3390/vaccines9070734.
DOI: https://doi.org/10.3390/vaccines9070734
45. World Health Organization (September 2020). "Messenger RNA encoding the full length SARS-CoV-2 spike glycoprotein" (DOC). (accessed on 17-10-2024)
46. Morais, P.; Adachi, H.; Yu, YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front. Cell Dev. Biol. 2021, 9, Art. No: 789427. DOI: 10.3389/fcell.2021.789427
DOI: https://doi.org/10.3389/fcell.2021.789427
47. Verbeke, R.; Lentacker, I.; Smedt, S.; Dewitte, H. The dawn of mRNA vaccines: The COVID-19 case. J. Control. Rel. 2021, 333, 511–520. DOI: 10.1016/j.jconrel.2021.03.0433
DOI: https://doi.org/10.1016/j.jconrel.2021.03.043
48. Lewis, L.; Badkar, A.; Cirelli, D.; Combs, R.; Lerch, T. The Race to Develop the Pfizer-BioNTech COVID-19 Vaccine: From the Pharmaceutical Scientists’ Perspective. J. Pharm. Sci. 2022, 112(3), 640-647. DOI: 10.1016/j.xphs.2022.09.014
DOI: https://doi.org/10.1016/j.xphs.2022.09.014
49. Kim, S.; Sekhon, S.; Shin, W.; Ahn, G.; Cho, B.; Ahn, J.; et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell Toxicol. 2022, 18(1), 1-8. DOI: 10.1007/s13273-021-00171-4
DOI: https://doi.org/10.1007/s13273-021-00171-4
50. Feng, X.; Su, Z.; Cheng, Y.; Ma, G.; Zhang, S. Messenger RNA chromatographic purification: advances and challenges. J. Chrom. 2023, 1707, Art. No: 464321. DOI: 10.1016/j.chroma.2023.464321
DOI: https://doi.org/10.1016/j.chroma.2023.464321
51. Kariko, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011, 39(21), Art. No: e142. DOI: 10.1093/nar/gkr695
DOI: https://doi.org/10.1093/nar/gkr695
52. Baronti, L.; Karlsson, H.; Marušič, M.; Petzold, K. A guide to large-scale RNA sample preparation. Anal. Bioanal. Chem. 2018, 410(14), 3239-3252. DOI: 10.1007/s00216-018-0943-8
DOI: https://doi.org/10.1007/s00216-018-0943-8
53. Wallace, R.; Rochfort, K. Ion-Exchange Chromatography: Basic Principles and Application. Methods Mol. Biol. 2023, 2699, 161-177. DOI: 10.1007/978-1-0716-3362-5_9
DOI: https://doi.org/10.1007/978-1-0716-3362-5_9
54. Grinsted, J.; Liddell, J.; Bouleghlimat, E.; Kwok, K.; Taylor, D.; Marques, M.; et al. Purification of therapeutic & prophylactic mRNA by affinity chromatography. Cell Gene Ther. Insights 2022, 8(2), 335–349. DOI: 10.18609/cgti.2022.049
DOI: https://doi.org/10.18609/cgti.2022.049
55. Mascellino, M.; Timoteo, F.; Angelis, M.; Oliva, A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. Infect. Drug Resist. 2021, 14, 3459–3476. DOI: 10.2147/IDR.S315727
DOI: https://doi.org/10.2147/IDR.S315727
56. Hengelbrock, A.; Schmidt, A.; Strube, J. Formulation of Nucleic Acids by Encapsulation in Lipid Nanoparticles for Continuous Production of mRNA. Processes 2023, 11, Art. No: 1718. DOI: 10.3390/pr11061718
DOI: https://doi.org/10.3390/pr11061718
57. Park, J.; Lagniton, P.; Liu, Y.; Xu, R. mRNA vaccines for COVID-19: what, why and how. Int. J. Biol. Sci. 2021, 17, 1446-1460. DOI: 10.7150/ijbs.59233
DOI: https://doi.org/10.7150/ijbs.59233
58. Wilson, B.; Geetha, K. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022, 74, 2-7. DOI: 10.1016/j.jddst.2022.103553
DOI: https://doi.org/10.1016/j.jddst.2022.103553
59. Semple, S.; Leone, R. Barbose C, Tam Y, Lin P. Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022, 14(2), Art. No: 398. DOI: 10.3390/pharmaceutics14020398.
DOI: https://doi.org/10.3390/pharmaceutics14020398
60. Chen, K.; Fan, N.; Huang, H.; Jiang, X.; Qin, S.; Wen, Xiao. W.; et al. mRNA Vaccines Against SARS-CoV-2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids. Adv. Funct. Mater. 2022, 32(39), Art. No: 2204692. DOI: 10.1002/adfm.202204692
DOI: https://doi.org/10.1002/adfm.202204692
61. Lamb, Y. BNT162b2 mRNA COVID 19 Vaccine: First Approval. Drugs. 2021, 81(4), 495–501. DOI: 10.1007/s40265-021-01480-7
DOI: https://doi.org/10.1007/s40265-021-01480-7
62. Zeng, C.; Zhang, C.; Walker, G.; Dong, Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr. Top. Microbiol. Immunol. 2022, 440, 71–110. DOI: 10.1007/82_2020_217
DOI: https://doi.org/10.1007/82_2020_217
63. Dowdy, S. Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem? RNA 2023, 29(4), 396-401. DOI: 10.1261/rna.079507.122
DOI: https://doi.org/10.1261/rna.079507.122
64. Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022, 7(94), Art. No: 94. DOI: 10.1038/s41392-022-00950-y
DOI: https://doi.org/10.1038/s41392-022-00950-y
65. Chavda, V.; Jogi, G.; Dave, S.; Patel, B.; Vineela, Nalla. L.; Koradia, K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines 2023, 11(3), Art. No: 507. DOI: 10.3390/vaccines11030507
DOI: https://doi.org/10.3390/vaccines11030507
66. Varkouhi, A.; Scholte, M.; Storm, G.; Haisma, H. Endosomal escape pathway for delivery of biologicals. J. Control Rel. 2011, 151(3), 220-228. DOI: 10.1016/j.jconrel.2010.11.004
DOI: https://doi.org/10.1016/j.jconrel.2010.11.004
67. Schlich, M.; Palomba, R.; Costabile, G.; Shoshy, Mizrahy S.; Pannuzzo, M.; Peer, D.; et al. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 2021, 6(2), Art. No: e10213. DOI: 10.1002/btm2.10213
DOI: https://doi.org/10.1002/btm2.10213
68. Paramasivam, P.; Franke, C.; Stoter, M.; Hoijer, A.; Stefano, Bartesaghi. S.; Sabirsh, A.; et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J. Cell Biol. 2022, 221(2), Art. No: e202110137. DOI: 10.1083/jcb.202110137
DOI: https://doi.org/10.1083/jcb.202110137
69. Institute of Medicine (US) Board on Health Promotion and Disease Prevention. Immune Response to Vaccine Antigens, in: Vaccine Safety Forum: Summaries of Two Workshops. Washington (DC): National Academies Press (US) 1997. Available from: https://www.ncbi.nlm.nih.gov/books/NBK233000/
70. Al Fayez, N.; Nassar, M.; Alshehri, A.; Alnefaie, M.; Almughem, F.; Alshehri, B.; et al. Recent Advancement in mRNA Vaccine Development And Applications. Pharmaceutics 2023, 15(7), Art. No: 1972. DOI: 10.3390/pharmaceutics15071972
DOI: https://doi.org/10.3390/pharmaceutics15071972
71. Sijts, E.; Kloetzel, P. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci. 2011, 68(9), 1491–1502. DOI: 10.1007/s00018-011-0657-y
DOI: https://doi.org/10.1007/s00018-011-0657-y
72. Cruz, F.; Chan, A.; Rock, K.; Pathways of MHC I cross-presentation of exogenous antigens. Semin. Immunol. 2023, 66, Art. No: 101729. DOI: 10.1016/j.smim.2023.101729
DOI: https://doi.org/10.1016/j.smim.2023.101729
73. Vojdani, A.; Koksoy, S.; Vojdani, E.; Engelman, M.; Benzvi, M.; Lerner, A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024, 12(1), Art. No: 230. DOI: 10.3390/microorganisms12010230.
DOI: https://doi.org/10.3390/microorganisms12010230
74. Bellavite, P.; Alessandra Ferraresi, A.; Isidoro, C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023, 11(2), Art. No: 451. DOI: 10.3390/biomedicines11020451.
DOI: https://doi.org/10.3390/biomedicines11020451
75. Gohda, E. Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms. J. Disaster. Res. 2022, 17(1), 7-20. DOI: 10.20965/jdr.2022.p0007
DOI: https://doi.org/10.20965/jdr.2022.p0007
76. Lee, J.; Woodruff, M.; Kim, E.; Nam, J. Knife’s edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp. Mol. Med. 2023, 55(7), 1305-1313. DOI: 10.1038/s12276-023-00999-x
DOI: https://doi.org/10.1038/s12276-023-00999-x
77. Lam, J.; Smith, F.; Baumgarth, N. B Cell Activation and Response Regulation During Viral Infections. Viral Immunol. 2020, 33(4), 294-306. DOI: 10.1089/vim.2019.0207
DOI: https://doi.org/10.1089/vim.2019.0207
78. Dai, L.; Gao, G. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73-82. DOI: 10.1038/s41577-020-00480-0
DOI: https://doi.org/10.1038/s41577-020-00480-0
79. Mancuso, R.; Agostini, S.; Citterio, L.; Chiarini, D.; Santangelo, M.; Clerici, M. Systemic and Mucosal Humoral Immune Response Induced by Three Doses of the BNT162b2 SARS-CoV-2 mRNA Vaccines. Vaccines 2022, 10(10), Art. No: 1649. DOI: 10.3390/vaccines10101649
DOI: https://doi.org/10.3390/vaccines10101649
80. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine. Action Follows Thorough Evaluation of Available Safety, Effectiveness, and Manufacturing Quality Information by FDA Career Scientists, Input from Independent Experts. Administration FaD; 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19 (accessed on 17-10-2024)
81. Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.; Vormehr, M.; et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021, 595, 572-577. DOI: 10.1038/s41586-021-03653-6.
DOI: https://doi.org/10.1038/s41586-021-03653-6
82. FDA Approves First COVID-19 Vaccine. Approval Signifies Key Achievement for Public Health. Administration FaD; 2021. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine (accessed on17-10-2024)
83. FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Children 5 through 11 Years of Age. Administration FaD; 2021. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age (accessed on 17-10-2024)
DOI: https://doi.org/10.47287/cen-09931-buscon1
84. Fernando, k.; Menon, S.; Jansen, k.; Naik, P.; Nucci, G.; Roberts, J.; et al. Achieving end-to-end success in the clinic: Pfizer’s learnings on R&D productivity. Drug Discov. Today 2022, 27(3), 697-704. DOI: 10.1016/j.drudis.2021.2.010
DOI: https://doi.org/10.1016/j.drudis.2021.12.010
85. Rohde, C.; Lindemann, C.; Giovanelli, M.; Sellers, R.; Diekmann, J.; Choudhary, S.; et al. Toxicological Assessments of a Pandemic COVID-19 Vaccine—Demonstrating the Suitability of a Platform Approach for mRNA Vaccines. Vaccines 2023, 11(2), Art. No: 417. DOI: 10.3390/vaccines11020417
DOI: https://doi.org/10.3390/vaccines11020417
86. Vogel, A.; Kanevsky, I.; Che, Y.; Swanson, K.; Muik, A.; Vormehr, M. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021, 592, 283-289. DOI: 10.1101/2020.09.08.280818.
DOI: https://doi.org/10.1038/s41586-021-03275-y
87. Walsh, E.; Frenck, R.; Falsey, A.; Kitchin, N.; Absalon, J.; Gurtman, A.; et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439-2450. DOI: 10.1056/NEJMoa2027906.
DOI: https://doi.org/10.1056/NEJMoa2027906
88. Mulligan, M.; Lyke, K.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589-593. DOI: 10.1038/s41586-020-2639-4.
DOI: https://doi.org/10.1038/s41586-020-2639-4
89. Polack, F.; Thomas, S.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603-2615. DOI: 10.1056/NEJMoa2034577.
DOI: https://doi.org/10.1056/NEJMoa2034577
90. Kadalia, R.; Janagamac, R.; Perurud, S.; Malayalae, S. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. IJID. 2021, 106, 376–381. DOI: 10.1016/j.ijid.2021.04.047
DOI: https://doi.org/10.1016/j.ijid.2021.04.047
91. Thomas, S.; Moreira, E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385(10), 1761-1773. DOI: 10.1056/NEJMoa2110345
DOI: https://doi.org/10.1056/NEJMoa2110345
92. Gobbi, F.; Buonfrate, D.; Moro, L.; Rodari, P.; Piubelli, C.; Caldrer, S.; et al. Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine In Subjects with Prior SARS-CoV-2 Infection. Viruses 2021, 13(3), Art. No: 422. DOI: 10.3390/v13030422
DOI: https://doi.org/10.3390/v13030422
93. Frenck, R.; Klein, N.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239-250. DOI: 10.1056/NEJMoa2107456
DOI: https://doi.org/10.1056/NEJMoa2107456
94. Walter, E.; Talaat, K.; Sabharwal, C.; Gurtman, A.; Lockhart, S.; Paulsen, G.; et al. Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 35-46. DOI: 10.1056/NEJMoa2116298
DOI: https://doi.org/10.1056/NEJMoa2116298
95. Moreira, E.; Kitchin, N.; Xu, X.; Dychter, S.; Lockhart, S.; Gurtman, A.; et al. Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. N. Engl. J. Med. 2022, 386(20), 1910-1921. DOI: 10.1056/NEJMoa2200674
DOI: https://doi.org/10.1056/NEJMoa2200674
96. Thomas, S.; Perez, J.; Lockhart, S.; Hariharan, S.; Kitchin, N.; Bailey, R.; et al. Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial. Vaccine 2022, 40, 1483-1492. DOI: 10.1016/j.vaccine.2021.12.046
DOI: https://doi.org/10.1016/j.vaccine.2021.12.046
97. Seekircher, L.; Bánki, Z.; Kimpel, J.; Rössler, A.; Schäfer, H.; Falkensammer, B.; et al. Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: an open-label, observational phase 4 trial. Lancet Microb. 2023, 4(8), e612-e621. DOI: 10.1016/s2666-5247(23)00107-6
DOI: https://doi.org/10.1016/S2666-5247(23)00107-6
98. Clairon, Q.; Prague, M.; Planas, D.; Bruel, T.; Hocqueloux, L.; Prazuck, T.; et al. Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after several administrations of Bnt162b2. PloS Comput. Biol. 2023, 19(8), Art. No: e1011282. DOI: 10.1371/journal.pcbi.1011282
DOI: https://doi.org/10.1371/journal.pcbi.1011282
99. Fitz-Patrick, D.; Young, M.; Yacisin, K.; McElwee, K.; Belanger, T.; Belanger, K.; et al. Randomized trial to evaluate the safety, tolerability, and immunogenicity of a booster (third dose) of BNT162b2 COVID-19 vaccine coadministered with 20-valent pneumococcal conjugate vaccine in adults ≥65 years old. Vaccine 2023, 41, 4190-4198. DOI: 10.1016/j.vaccine.2023.05.002.
DOI: https://doi.org/10.1016/j.vaccine.2023.05.002
100. Chantasrisawad, N.; Techasaensiri, C.; Kosalarksa, P.; Phongsamart, W.; Tangsathapronpong, A.; Ampornpan, J.; et al. The immunogenicity of an extended dosing interval of BNT162b2 against SARS-CoV-2 Omicron variant among healthy school-aged children, a randomized controlled trial. Int. J. Infect. Dis. 2023, 130, 52-59. DOI: 10.1016/j.ijid.2023.02.017
DOI: https://doi.org/10.1016/j.ijid.2023.02.017
101. Simões, E.; Klein, P.; Sabharwa, C.; Gurtman, A.; Kitchin, N.; Ukkonen, B.; et al. Immunogenicity and Safety of a Third COVID-19 BNT162b2 mRNA Vaccine Dose in 5- to 11-Year Olds. J. Pediatric. Infect. Dis. Soc. 2023, 12(4), 234-238. DOI: 10.1093/jpids/piad015
DOI: https://doi.org/10.1093/jpids/piad015
102. Radner, H.; Sieghart, D.; Jorda, A.; Fedrizzi, C.; Hasenöhrl, T.; Zdravkovic, A.; et al. Reduced immunogenicity of BNT162b2 booster vaccination in combination with a tetravalent influenza vaccination: results of a prospective cohort study in 838 health workers. Clin. Microbiol. Infect. 2022, 29(5), 635-641. DOI: 10.1016/j.cmi.2022.12.008
DOI: https://doi.org/10.1016/j.cmi.2022.12.008
103. Muñoz, F.; Sher, L.; Sabharwal, C.; Gurtman, A.; Xu, X.; Kitchin, N.; Lockhart, S.; et al. Evaluation of BNT162b2 Covid-19 Vaccine in Children Younger than 5 Years of Age. N. Engl. J. Med. 2023, 388(7), 621-634. DOI: 10.1056/NEJMoa2211031
DOI: https://doi.org/10.1056/NEJMoa2211031
104. Munro, A.; Feng, S.; Janani, L.; Cornelius, V.; Aley, P.; Babbage, G.; et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. Lancet Infect. Dis. 2022, 22(8), 1131-1141. DOI: 10.1016/S1473-3099(22)00271-7
DOI: https://doi.org/10.1016/S1473-3099(22)00271-7
105. Bergman, P.; Blennow, O.; Hansson, L.; Mielke, S.; Nowak, P.; Chen, p.; et al. Safety and efficacy of the mRNA BNT162b2 vaccine against SARS-CoV-2 in five groups of immunocompromised patients and healthy controls in a prospective open-label clinical trial. EBioMed. 2021, 74, Art. No: 103705. DOI: 10.1016/j.ebiom.2021.103705
DOI: https://doi.org/10.1016/j.ebiom.2021.103705
106. Usdan, L.; Patel, S.; Rodriguez, H.; Xu, X.; Lee, D.; Finn, D.; et al. A Bivalent Omicron-BA.4/BA.5-Adapted BNT162b2 Booster in ≥12-Year-Olds. Clin. Infect. Dis. 2024, 78(5), 1194-1203. DOI: 10.1093/cid/ciad718
DOI: https://doi.org/10.1093/cid/ciad718