1. Yousefi, Z.; Aria, H.; Ghaedrahmati, F.; et al. An Update on Human Papilloma Virus Vaccines: History, Types, Protection, and Efficacy. Front. Immunol. 2022, 12. Art. No: 805695. DOI: 10.3389/fimmu.2021.805695
DOI: https://doi.org/10.3389/fimmu.2021.805695
2. Nelson, C.W.; Mirabello, L. Human papillomavirus genomics: Understanding carcinogenicity. Tumour Virus Res. 2023, 15, Art.. No: 200258. DOI: 10.1016/j.tvr.2023.200258
DOI: https://doi.org/10.1016/j.tvr.2023.200258
3. Demarco, M.; Hyun, N.; Carter-Pokras, O.; et al. A study of type-specific HPV natural history and implications for contemporary cervical cancer screening programs. eClinicalMedicine. 2020, 22, Art. No: 100293. DOI: 10.1016/j.eclinm.2020.100293
DOI: https://doi.org/10.1016/j.eclinm.2020.100293
4. Baedyananda, F.; Sasivimolrattana, T.; Chaiwongkot, A.; et al. Role of HPV16 E1 in cervical carcinogenesis. Front. Cell Infect. Microbiol. 2022, 12, Art. No: 955847. DOI: 10.3389/fcimb.2022.955847
DOI: https://doi.org/10.3389/fcimb.2022.955847
5. Yu, L.; Majerciak, V.; Zheng, Z.M. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int. J. Mol. Sci. 2022, 23, p. 4943. DOI: 10.3390/ijms23094943
DOI: https://doi.org/10.3390/ijms23094943
6. Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, pp: 518–527. DOI: 10.1056/NEJMoa021641
DOI: https://doi.org/10.1056/NEJMoa021641
7. Mikuličić, S.; Strunk, J.; Florin, L. HPV16 Entry into Epithelial Cells: Running a Gauntlet. Viruses. 2021, 13, p. 2460. DOI: 10.3390/v13122460
DOI: https://doi.org/10.3390/v13122460
8. Moody, C.A. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses. 2017, 9, p: 261. DOI: 10.3390/v9090261
DOI: https://doi.org/10.3390/v9090261
9. Shaikh, F.; Sanehi, P.; Rawal, R. Molecular screening of compounds to the predicted Protein-Protein Interaction site of Rb1-E7 with p53- E6 in HPV. Bioinformation. 2012, 8, pp. 607-612. DOI: 10.6026/97320630008607
DOI: https://doi.org/10.6026/97320630008607
10. Broniarczyk, J.; Koczorowska, M. M.; Durzyńska, J.; Warowicka, A.; Goździcka-Józefiak, A. Struktura i właściwości wirusa brodawczaka ludzkiego [Structure and properties of human papillomavirus]. Biotechnologia. 2010, 90, pp. 126-145. DOI: 10.18388/biotech.2010.90.126.
11. Piesiaków, M. L.; Imko-Walczuk, B.; Osiecka, B.; Sławińska, D.; Sławiński, M. Wirusy onkogenne w etiopatogenezie nowotworów skóry u chorych po przeszczepieniach narządów. [Carcinogenic viruses in etiopathogenesis of skin cancers in patients after organ transplantation.] Postępy Hig. Med. Dosw. 2016, 70, pp. 1256-1265. DOI: 10.5604/17322693.1226494.
DOI: https://doi.org/10.5604/17322693.1194807
12. Warowicka, A.; Nawrot, R.; Broniarczyk, J.; Węglewska, M.; Goździcka-Józefiak, A. Wirusy onkogenne a nowotwory. [Oncogenic viruses and cancer]. Postępy Biochemii. 2020, 66, pp.385-394. DOI: 10.18388/pb.2020_360.
DOI: https://doi.org/10.18388/pb.2020_360
13. Rafael,T. S.; Rotman, J.; Brouwer, O. R.; Poel, H. G.; Mom, C. H.; Kenter, G. G.; Gruijl, T. D.;Jordanova, E. S. Immunotherapeutic Approaches for the Treatment of HPV-Associated (Pre-)Cancer of the Cervix, Vulva and Penis. J. Clin. Med. 2022, 11, pp: 1101; DOI: 10.3390/jcm11041101
DOI: https://doi.org/10.3390/jcm11041101
14. Zhou, C.; Toung, Z. K.; Frazer, I. H. Papillomavirus Immune Evasion Strategies Target the Infected Cell. Frontier in Immunology. 2019, 9, pp. 682. DOI: 10.3389/fonc.2019.00682.
DOI: https://doi.org/10.3389/fonc.2019.00682
15. Senba, M.; Mori, N. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol. Rev. 2012, 6. DOI: 10.4081/oncol.2012.e17
DOI: https://doi.org/10.4081/oncol.2012.e17
16. Williamson, A.L. Recent Developments in Human Papillomavirus (HPV) Vaccinology. Viruses. 2023, 15, p. 1440. DOI: 10.3390/v15071440
DOI: https://doi.org/10.3390/v15071440
17. Zou, K.; Huang, Y.; Li, Z. Prevention and treatment of human papillomavirus in men benefits both men and women. Front. Cell. Infect. Microbiol. 2022, 12, Art. No: 1077651. DOI: 10.3389/fcimb.2022.1077651
DOI: https://doi.org/10.3389/fcimb.2022.1077651
18. Kechagias, K.S.; Kalliala, I.; Bowden, S.J.; et al. Role of human papillomavirus (HPV) vaccination on HPV infection and recurrence of HPV related disease after local surgical treatment: systematic review and meta-analysis. BMJ. 2022, Art. No: 378:e070135. DOI: 10.1136/bmj-2022-070135
DOI: https://doi.org/10.1136/bmj-2022-070135
19. Eriksen, D.O.; Jensen, P.T.; Schroll, J.B.; Hammer, A. Human papillomavirus vaccination in women undergoing excisional treatment for cervical intraepithelial neoplasia and subsequent risk of recurrence: A systematic review and meta‐analysis. Acta. Obstet. Gynecol. Scand. 2022, 101, pp: 597–607. DOI: 10.1111/aogs.14359
DOI: https://doi.org/10.1111/aogs.14359
20. Malagon, T.; MacCosham, A.; Burchell, A.N.; El-Zein, M.; et al. Proportion of Incident Genital Human Papillomavirus Detections not Attributable to Transmission and Potentially Attributable to Latent Infections: Implications for Cervical Cancer Screening. Clin. Infect. Dis. 2021, 75, pp:365–371. DOI: 10.1093/cid/ciab985
DOI: https://doi.org/10.1093/cid/ciab985
21. Lin, R.; Jin, H.; Fu, X. Comparative efficacy of human papillomavirus vaccines: systematic review and network meta-analysis. Expert. Rev. Vaccines. 2023, 22, pp. 1168-1178. DOI: 10.1080/14760584.2023.2287135
DOI: https://doi.org/10.1080/14760584.2023.2287135
22. Human Papillomavirus Vaccines WHO: WHO Position. Wkly. Epidemiol. Rec. 2022, 97, pp: 645–672.
23. Brisson, M.; Bénard, É.; Drolet, M.; Bogaards, J.A.; Baussano, I.; et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health. 2016, 1, pp: 8–17. DOI: 10.1016/S2468-2667(16)30001-9
DOI: https://doi.org/10.1016/S2468-2667(16)30001-9
24. Gultekin, M.; Ramirez, P.T.; Broutet, N.; Hutubessy, R. World Health Organization call for action to eliminate cervical cancer globally. Int. J. Gynecol. Cancer. 2020, 30, pp: 426–427. DOI: 10.1136/ijgc-2020-001285
DOI: https://doi.org/10.1136/ijgc-2020-001285
25. Glinska, P.; Komerska, K.; Janik,B.; et al. HPV testing in Polish population-based cervical cancer screening programme (HIPPO project)—study protocol of a randomised healthcare policy trial. BMC Cancer. 2023, 23, p:1118. DOI: 10.1186/s12885-023-11597-5
DOI: https://doi.org/10.1186/s12885-023-11597-5
26. Open Research. Available online: https://openbadania.pl/educations/article/bezpieczny-seks-i-profilaktyka-raka-szyjki-macicy (accessed 10.01.2025)
27. Repp, K.K.; Nielson, C.M.; Fu, R.; et al. Male Human Papillomavirus Prevalence and Association With Condom Use in Brazil, Mexico, and the United States. J. Infect. Dis. 2012, 205, pp: 1287–1293. DOI: 10.1093/infdis/jis181
DOI: https://doi.org/10.1093/infdis/jis181
28. Chih, H.J.; Lee, A.H.; Colville, L.; et al. A review of dietary prevention of human papillomavirus-related infection of the cervix and cervical intraepithelial neoplasia. Nutr. Cancer. 2013, 65, pp: 317-28. DOI: 10.1080/01635581.2013.757630
DOI: https://doi.org/10.1080/01635581.2013.757630
29. Irish, L.A.; Kline, C.E.; Gunn, H.E.; et al. The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep. Med. Rev. 2015, 22, pp: 23-36. DOI: 10.1016/j.smrv.2014.10.001. Epub 2014 Oct 16
DOI: https://doi.org/10.1016/j.smrv.2014.10.001
30. Coker, A.L.; Bond, S.; Madeleine, M.M.; Luchok, K.; Pirisi, L. Psychosocial stress and cervical neoplasia risk. Psychosom. Med. 2003, 65, pp: 644-651. DOI: 10.1097/01.psy.0000041471.57895.08
DOI: https://doi.org/10.1097/01.PSY.0000041471.57895.08
31. Batman, A.M.; Miles, M.F. Translating Alcohol Research Opportunities and Challenges. Alcohol Res. Curr. Rev. 2015, 37, pp: 7-14. DOI: 10.35946/arcr.v37.2.01
32. Schabath, M.B.; Villa, L.L.; Lin, H.Y.; et al. A prospective analysis of smoking and human papillomavirus (HPV) infection among men in The HPV in Men (HIM) Study. Int. J. Cancer. 2013, 134, pp: 2448–2457. DOI: 10.1002/ijc.28567
DOI: https://doi.org/10.1002/ijc.28567
33. Practical Medicine. Available online: https://www.mp.pl/pacjent/ginekologia/badania-i-zabiegi/292320,cytologia-badanie-cytologiczne-wszystko-co-musisz-wiedziec?fbclid=IwY2xjawH-SbJleHRuA2FlbQIxMAABHX6xPNPHf7-jSY4DldjDCodgkJ_xpP41BulPH3ciEKfrBcV2Qo_ZqcQmFg_aem_keKq1B96e0t7imn09u63ng (accessed 14.01.2025)
34. Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, pp: 12-9. DOI: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
DOI: https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
35. World Health Organization. Available online: https://www.who.int/europe/news-room/11-09-2021-who-recommends-dna-testing-as-a-first-choice-screening-method-for-cervical-cancer-prevention?fbclid=IwY2xjawIE3XdleHRuA2FlbQIxMAABHRZ-c0BV7Dsw1jOjYqWCW5zHQV5Ngtso4U4AN__NG_4qYmwbl42sbMEFgQ_aem_xAjJJ314fcphN8BKWl1hCA (accessed 16.01.2025)
36. Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet. Oncol. 2010, 11, pp: 249-257. DOI: 10.1016/S1470-2045(09)70360-2
DOI: https://doi.org/10.1016/S1470-2045(09)70360-2
37. Zheng, Z.; Yang, X.; Yao, X.; Li, L. Prognostic value of HPV 16/18 genotyping and geminin mRNA quantification in low-grade cervical squamous intraepithelial lesion. Bioengineered. 2021, 12, pp. 11482-11489. DOI: 10.1080/21655979.2021.2009959
DOI: https://doi.org/10.1080/21655979.2021.2009959
38. Stoler, M.H.; Wright Jr, T.C.; Parvu, V.; Yanson, K.; et al. HPV Testing With 16, 18, and 45 Genotyping Stratifies Cancer Risk for Women With Normal Cytology. Am. J. Clin. Pathol. 2019, 151, pp: 433-442. DOI: 10.1093/ajcp/aqy169
DOI: https://doi.org/10.1093/ajcp/aqy169
39. Torres-Ibarra, L.; Cuzick, J.; Lorincz, A.; Spiegelman, D.; et al. Comparison of HPV-16 and HPV-18 Genotyping and Cytological Testing as Triage Testing Within Human Papillomavirus–Based Screening in Mexico. JAMA Netw. Open. 2019, 2, Art. No: e1915781. DOI: 10.1001/jamanetworkopen.2019.15781
DOI: https://doi.org/10.1001/jamanetworkopen.2019.15781
40. Singh, M.; Mockler, D.; Akalin, A.; et al. Immunocytochemical colocalization of P16(INK4a) and Ki-67 predicts CIN2/3 and AIS/adenocarcinoma. Cancer Cytopathol. 2012, 120, pp: 26-34. DOI: 10.1002/cncy.20188
DOI: https://doi.org/10.1002/cncy.20188
41. Wentzensen, N.; Schwartz, L.; Zuna, R.E.; et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin. Cancer Res. 2012, 18, pp: 4154-4162. DOI: 10.1158/1078-0432.CCR-12-0270
DOI: https://doi.org/10.1158/1078-0432.CCR-12-0270
42. Bergeron, C.; Ronco, G.; Reuschenbach, M.; et al. The clinical impact of using p16(INK4a) immunochemistry in cervical histopathology and cytology: an update of recent developments. Int. J. Cancer. 2015, 136, pp:2741-2751. DOI: 10.1002/ijc.28900
DOI: https://doi.org/10.1002/ijc.28900
43. Bruno, M.T.; Guaita, A.; Boemi, S.; et al. Performance of p16/Ki67 Immunostaining for Triage of Elderly Women with Atypical Squamous Cells of Undetermined Significance. J. Clin. Med. 2023, 12, p. 3400. DOI: 10.3390/jcm12103400
DOI: https://doi.org/10.3390/jcm12103400
44. McMenamin, M.; McKenna, M.; et al. Clinical Utility of CINtec PLUS Triage in Equivocal Cervical Cytology and Human Papillomavirus Primary Screening. Am. J. Clin. Pathol. 2018, 150, pp: 512-521. DOI: 10.1093/ajcp/aqy073
DOI: https://doi.org/10.1093/ajcp/aqy073
45. Practical Medicine. Available online: https://www.mp.pl/pacjent/badania_zabiegi/263494,kolposkopia (accessed 15.01.2025)
46. Cervix. Available online: https://kolposkopia.com/kolposkopia/?fbclid=IwY2xjawIDK45leHRuA2FlbQIxMAABHfQDWAWzt2m_tpKfwrl6PDpx95nB2Ql1U3WWfN4589kOvDYyMPzYA3IiIQ_aem_4Yy-EPbcRutHsHQqKFzZtg (accessed 20.01.2025)
47. Wikipedia. The free encyclopedia. Available online: https://pl.wikipedia.org/wiki/Pr%C3%B3ba_Schillera?fbclid=IwY2xjawIDK-FleHRuA2FlbQIxMAABHXTU8oF5GepS_Ug53zjApbUmTavBBlauQzjbCCX3S9WCeLNON1jWgs1yrA_aem_koL1sszZC7bNj6ONdHhMJw (accessed 20.01.2025)
48. Service of the Republic of Poland. Available online: https://www.gov.pl/web/zdrowie/program-profilaktyki-raka-szyjki-macicy-cytologia-?fbclid=IwY2xjawH-SaZleHRuA2FlbQIxMAABHUeDbNySpsxHsIaHwKRjGjM_7LQTvlNJfq61qbXlCMXAVTvAzi2rRJNmUQ_aem_DJ7a5-NoYaVjImmdthlnZA (accessed 16.01.2025)
49. Service of the Republic of Poland. Available online: https://www.gov.pl/web/zdrowie/dwa-nowoczesne-badania-w-profilaktyce-raka-szyjki-macicy?fbclid=IwY2xjawH-ScNleHRuA2FlbQIxMAABHT59ROhJPA9T8XZe6qXhU9n6F3c0v7rwSxkV9ImGXXwVzteEsN6qtlwB3g_aem_PC65Pv_PXaFzq7Jgfdr9Mw (accessed 16.01.2025)
50. Jach, R.; Mazurec, M.; Trzeszcz, M.; Stukan, M.; et al. Position on the Scheme of Procedure for Basic Cervical Cancer Screening of the Polish Society of Gynecologists and Obstetricians (PTGiP) – June 2022. Position of the Polish Society of Colposcopy and Cervical Pathophysiology – August 2022. Practical Medicine – Gynecology and obstetrics. 2022, pp. 69-82.
51. Kornovski, Y.; Slavchev, S.; Kostov, S.; et al. Precancerous lesions of the cervix — aetiology, classification, diagnosis, prevention. Oncol. Clin. Pract. 2021, 17. DOI: 10.5603/OCP.2021.0027
DOI: https://doi.org/10.5603/OCP.2021.0027
52. Tai, Y. J.; Chen, Y. Y.; Hsu, H. C.; Chiang, C. J.; You, S. L.; Chen, H. C.; Chen, C. A.; Cheng, W. F. Clinical management and risk reduction in women with low-grade squamous intraepithelial lesion cytology: A population-based cohort study. PLoS. One. 2017, 12. DOI: 10.1371/journal.pone.0188203
DOI: https://doi.org/10.1371/journal.pone.0188203
53. Scheungraber, C.; Kleekamp, N.; Schneider, A. Management of low-grade squamous intraepithelial lesions of the uterine cervix. Br. J Cancer. 2004 90, pp: 975–978. DOI: 10.1038/sj.bjc.6601415
DOI: https://doi.org/10.1038/sj.bjc.6601415
54. Pisarska-Krawczyk, M.; Radomski, D.; Jarząbek-Bielecka, G.; Mizgier, M.; Kędzia, W. Cryotherapy and other ablation techniques in the treatment of cervical intraepithelial neoplasia. [Krioterapia a inne metody ablacyjne w leczeniu śródnabłonkowej neoplazji szyjki macicy]. Curr. Gynecol. Oncol. 2015, 13, pp: 165–171 DOI: 10.15557/CGO.2015.0018
DOI: https://doi.org/10.15557/CGO.2015.0018
55. Center for Preventive Medicine. Mental health. Cervical cryotherapy. Available online: https://cmp.krakow.pl/prywatna/uslugi/poradnia-ginekologiczno-poloznicza/krioterapia-szyjki-macicy/ (accessed on 29 January 2025)
56. World Health Organization. WHO guidelines for the use of thermal ablation for cervical pre-cancer lesions. Available online: https://www.who.int/publications/i/item/9789241550598 (accessed on 29 January 2025).
57. de Fouw, M.; Oosting, R. M.; Rutgrink, A.; Dekkers, O. M.; Peters, A. A. W.; Beltman, J. A systematic review and meta-analysis of thermal coagulation compared with cryotherapy to treat precancerous cervical lesions in low- and middle-income countries. Int. J. Gynaecol. Obstet. 2019, 147, pp: 14-18
DOI: https://doi.org/10.1002/ijgo.12904
58. Oncogin Gynecology. Surgical fractional laser. Available online: http://onkogin.pl/laser-frakcyjny-chirurgiczny/ (accessed on 29 January 2025).
59. La Guèl Clinic & SPA. LEEP – elektrokonizacja szyjki macicy w przypadku zmian HSIL. Available online: https://www.laguel.pl/leep-elektrokonizacja-szyjki-macicy-w-przypadku-zmian-hsil/ (accessed on 29 January 2025).
60. Martin-Hirsch, P. P. L.; Paraskevaidis, E.; Bryant, A.; Dickinson, H. O.; Keep, S. L. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2010, 6. DOI: 10.1002/14651858.CD001318.pub2
DOI: https://doi.org/10.1002/14651858.CD001318.pub2
61. Li, X.; Liu, M.; Ji, Y.; Qu, P. The effectiveness of cold-knife conization (CKC) for post-menopausal women with cervical high-grade squamous intraepithelial lesion: a retrospective study. BMC Surg. 2021, 21, pp: 241. DOI: 10.1186/s12893-021-01238-
DOI: https://doi.org/10.1186/s12893-021-01238-8
62. StatPearls. Publishing. Cold Knife Conization of the Cervix. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441845/ (accessed on 29 January 2025).
63. Burmeister, C. A.; Khan, S. F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022, 13. DOI: 10.1016/j.tvr.2022.200238
DOI: https://doi.org/10.1016/j.tvr.2022.200238
64. National Library of Medicine. Cervical Cancer Treatment. Available online: https://www.ncbi.nlm.nih.gov/books/NBK65985/ (accessed on 30 January 2025).
65. Tewari, K. S.; Sill, M. W.; Penson, R. T.; Huang, H.; Ramondetta, L. M.; Landrum, L. M.; Oaknin, A.; Reid, T. J.; Leitao, M. M.; Michael, H. E.; DiSaia, P. J.; Copeland, L. J.; Creasman, W. T.; Stehman, F. B.; Brady, M. F.; Burger, R. A.; Thigpen, J. T.; Birrer, M. J.; Waggoner, S. E.; Moore, D. H.; Look, K. Y.; Koh, W. J.; Monk, B. J. Final Overall Survival of the Phase III Randomised Trial of Chemotherapy with and without Bevacizumab for Advanced Cervical Cancer: An NRG Oncology/Gynecologic Oncology Group Study. Lancet. 2017, 390, pp: 1654–1663. DOI: 10.1016/S0140-6736(17)31607-0.
DOI: https://doi.org/10.1016/S0140-6736(17)31607-0
66. Nowak-Markwitz, E.; Basta, A.; Kotarski, J.; Markowska, J.; Oszukowski, P.; Sajdak, S.; Sawicki, W.; Spaczyński, M. Systemic therapy of recurrent or persistent cancer of the cervix. Recommendations of the Polish Gynecological Society [Rekomendacje Polskiego Towarzystwa Ginekologicznego. Leczenie systemowe nawrotowego i przetrwałego raka szyjki macicy]. Ginekol Pol. 2015, 86, pp: 712-714. DOI: 10.17772/gp/59225.
DOI: https://doi.org/10.17772/gp/59225
67. Massobrio, R.; Bianco, L.; Campigotto, B.; Attianese D.; Maisto, E.; Pascotto, M.; Redda, M. G. R.; Ferrero, A. New Frontiers in Locally Advanced Cervical Cancer Treatment. J. Clin. Med. 2024, 13, pp: 4458. DOI: 10.3390/jcm13154458.
DOI: https://doi.org/10.3390/jcm13154458
68. Mo, Y.; Ma, J.; Zhang, H.; Shen, J.; Chen, J.; Hong, J.; Xu, Y.; Qian, C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front. Cell Infect. Microbiol. 2022, 12, pp: 909223. DOI: 10.3389/fcimb.2022.909223
DOI: https://doi.org/10.3389/fcimb.2022.909223
69. Rumfield, C. S.; Roller, N.; Pellom, S. T.; Jeffrey, S.; Jochems, C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther. 2020, 9, pp: 167–200. DOI: 10.2147/ITT.S273327
DOI: https://doi.org/10.2147/ITT.S273327
70. Trimble, C. L.; Morrow, M. P.; Kraynyak, K. A.; Shen, X.; Dallas, M. et all. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015, 386, pp: 2078–2088. DOI: 10.1016/S0140-6736(15)00239-1
DOI: https://doi.org/10.1016/S0140-6736(15)00239-1
71. Teffera, Z.; Yihunie, W.; Tegegne, B.; Misganaw, B.; Abebaw, D.; Belayineh, M.; Akelew, Y.; Dilnesa, T.; Adugna, A.; Silabat, B.; Tefera, S.; Belew, H.; Bimrew, L. Efficacy of a novel high risk HPV 16/18 therapeutic vaccine in treating cervical intraepithelial neoplasia and cervical cancer in a clinical trial: A systematic review and meta analysis. World Academy of Sciences Journal, 2024, 6, pp: 52. DOI: 10.3892/wasj.2024.267
DOI: https://doi.org/10.3892/wasj.2024.267