1. Huang, X., et al., Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocolloids, 2017. 64: p. 157-165.
DOI: https://doi.org/10.1016/j.foodhyd.2016.10.029
2. Khan, M.A., et al., Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol. Journal of Food Engineering, 2019. 258: p. 45-53.
DOI: https://doi.org/10.1016/j.jfoodeng.2019.04.010
3. Liu, Y., et al., Resveratrol-loaded biopolymer core–shell nanoparticles: Bioavailability and anti-inflammatory effects. Food & function, 2020. 11(5): p. 4014-4025.
DOI: https://doi.org/10.1039/D0FO00195C
4. Walle, T., Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 2011. 1215(1): p. 9-15.
DOI: https://doi.org/10.1111/j.1749-6632.2010.05842.x
5. Francioso, A., et al., Chemistry, stability and bioavailability of resveratrol. Medicinal Chemistry, 2014. 10(3): p. 237-245.
DOI: https://doi.org/10.2174/15734064113096660053
6. Chan, E.W.C., et al., Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. 2019. 9(7): p. 124-129.
DOI: https://doi.org/10.7324/JAPS.2019.90717
7. Salehi, B., et al., Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018. 6(91): p. 1-20.
DOI: https://doi.org/10.3390/biomedicines6030091
8. Hung, C.-F., et al., Development and evaluation of emulsion-liposome blends for resveratrol delivery. Journal of nanoscience and nanotechnology, 2006. 6(9-10): p. 2950-2958.
DOI: https://doi.org/10.1166/jnn.2006.420
9. Huang, X., et al., Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids, 2019. 93: p. 261-269
10. Sessa, M., et al., Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. Journal of agricultural and food chemistry, 2011. 59(23): p. 12352-12360.
DOI: https://doi.org/10.1021/jf2031346
11. Walle, T., et al., High absorption but very low bioavailability of oral resveratrol in humans. Drug metabolism and disposition, 2004. 32(12): p. 1377-1382.
DOI: https://doi.org/10.1124/dmd.104.000885
12. Goldberg, D.M., J. Yan, and G.J. Soleas, Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical biochemistry, 2003. 36(1): p. 79-87.
DOI: https://doi.org/10.1016/S0009-9120(02)00397-1
13. Kuhnle, G., et al., Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochemical and biophysical research communications, 2000. 272(1): p. 212-217.
DOI: https://doi.org/10.1006/bbrc.2000.2750
14. Liu, Y., et al., α-Lactalbumin and chitosan core–shell nanoparticles: Resveratrol loading, protection, and antioxidant activity. Food & Function, 2020. 11(2): p. 1525-1536.
DOI: https://doi.org/10.1039/C9FO01998G
15. Chen, F., et al., Nanocomplexation between curcumin and soy protein isolate: influence on curcumin stability/bioaccessibility and in vitro protein digestibility. Journal of Agricultural and Food Chemistry, 2015. p. 1-43.
DOI: https://doi.org/10.1021/acs.jafc.5b00448
16. Falsafi, S.R., et al., Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacological Research, 2022. 178: p. 106164.
DOI: https://doi.org/10.1016/j.phrs.2022.106164
17. Rostamabadi, H., et al., Nano-helices of amylose for encapsulation of food ingredients, in Biopolymer nanostructures for food encapsulation purposes. Elsevier. 2019, p. 463-491.
DOI: https://doi.org/10.1016/B978-0-12-815663-6.00016-1
18. Zhao, C., et al., Structure and acid-induced gelation properties of soy protein isolate–maltodextrin glycation conjugates with ultrasonic pretreatment. Food Hydrocolloids, 2021. 112: p. 106278.
DOI: https://doi.org/10.1016/j.foodhyd.2020.106278
19. Bassijeh, A., et al., Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and Persian gum and its use as a natural colorant in a model beverage. Food Research International, 2020. 137: p. 1-10.
DOI: https://doi.org/10.1016/j.foodres.2020.109689
20. Dickinson, E., Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter, 2008. 4(5): p. 932-942.
DOI: https://doi.org/10.1039/b718319d
21. Schmidt, I., et al., Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. Journal of colloid and interface science, 2010. 345(2): p. 316-324.
DOI: https://doi.org/10.1016/j.jcis.2010.01.016
22. Wijaya, W., et al., Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science & Technology, 2017. 68: p. 56-69.
DOI: https://doi.org/10.1016/j.tifs.2017.08.003
23. Chimento, A., et al., Progress to improve oral bioavailability and beneficial effects of resveratrol. International journal of molecular sciences, 2019. 20(6): p. 1381.
DOI: https://doi.org/10.3390/ijms20061381
24. Ovesna, Z., et al., Structure-activity relationship of trans-resveratrol and its analogues. Neoplasma, 2005. 52(6): p. 450.
25. Matsuoka, A., et al., The 4′-hydroxy group is responsible for the in vitro cytogenetic activity of resveratrol. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2002. 521(1-2): p. 29-35.
DOI: https://doi.org/10.1016/S1383-5718(02)00211-5
26. Stojanović, S., et al., Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Archives of Biochemistry and Biophysics, 2001. 391(1): p. 79-89.
DOI: https://doi.org/10.1006/abbi.2001.2388
27. Fang, J.G., et al., Antioxidant effects of resveratrol and its analogues against the free‐radical‐induced peroxidation of linoleic acid in micelles. Chemistry–A European Journal, 2002. 8(18): p. 4191-4198.
DOI: https://doi.org/10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
28. Xu, S., et al., A Dmol3 study on the reaction between trans-resveratrol and hydroperoxyl radical: dissimilarity of antioxidant activity among O–H groups of trans-resveratrol. Journal of Molecular Structure: THEOCHEM, 2007. 809(1-3): p. 79-85.
DOI: https://doi.org/10.1016/j.theochem.2007.01.036
29. Stivala, L.A., et al., Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. Journal of Biological Chemistry, 2001. 276(25): p. 22586-22594.
DOI: https://doi.org/10.1074/jbc.M101846200
30. Caruso, F., et al., Structural basis for antioxidant activity of trans-resveratrol: ab initio calculations and crystal and molecular structure. Journal of agricultural and food chemistry, 2004. 52(24): p. 7279-7285.
DOI: https://doi.org/10.1021/jf048794e
31. Cao, H., et al., Density functional theory calculations for resveratrol. Bioorganic & medicinal chemistry letters, 2003. 13(11): p. 1869-1871.
DOI: https://doi.org/10.1016/S0960-894X(03)00283-X
32. López-Nicolás, J.M. and F. García-Carmona, Aggregation state and p K a values of (E)-resveratrol as determined by fluorescence spectroscopy and UV− visible absorption. Journal of agricultural and food chemistry, 2008. 56(17): p. 7600-7605.
DOI: https://doi.org/10.1021/jf800843e
33. Artursson, P. and J. Karlsson, Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and biophysical research communications, 1991. 175(3): p. 880-885.
DOI: https://doi.org/10.1016/0006-291X(91)91647-U
34. Kaldas, M.I., et al., Resveratrol transport and metabolism by human intestinal Caco‐2 cells. Journal of Pharmacy and pharmacology, 2003. 55(3): p. 307-312.
DOI: https://doi.org/10.1211/002235702612
35. Maier‐Salamon, A., et al., Metabolism and disposition of resveratrol in the isolated perfused rat liver: role of Mrp2 in the biliary excretion of glucuronides. Journal of pharmaceutical sciences, 2008. 97(4): p. 1615-1628.
DOI: https://doi.org/10.1002/jps.21057
36. Van de Wetering, K., et al., Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Molecular pharmacology, 2009. 75(4): p. 876-885.
DOI: https://doi.org/10.1124/mol.108.052019
37. Soleas, G.J., et al., Absorption of trans-resveratrol in rats, in Methods in Enzymology. 2001, Elsevier. p. 145-154.
DOI: https://doi.org/10.1016/S0076-6879(01)35239-4
38. Pannu, N., et al., Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomedicine & Pharmacotherapy, 2019. 109: p. 2237-2251.
DOI: https://doi.org/10.1016/j.biopha.2018.11.075
39. Wenzel, E. and V. Somoza, Metabolism and bioavailability of trans‐resveratrol. Molecular nutrition & food research, 2005. 49(5): p. 472-48.
DOI: https://doi.org/10.1002/mnfr.200500010
40. Meng, X., et al., Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. Journal of agricultural and food chemistry, 2004. 52(4): p. 935-942.
DOI: https://doi.org/10.1021/jf030582e
41. Devi, P., et al., Novel drug delivery systems of resveratrol to bioavailability and therapeutic effects. Resveratrol-adding life to years, not adding years to life, 2019: p. 25-45.
DOI: https://doi.org/10.5772/intechopen.79739
42. Yang, B., et al., Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 2020. 25(20): p. 4613.
DOI: https://doi.org/10.3390/molecules25204613
43. Jiang, M., et al., Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. International Journal of Biological Macromolecules, 2023. 250: p. 126153.
DOI: https://doi.org/10.1016/j.ijbiomac.2023.126153
44. Patel, P., et al., Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals, 2024. 17(3): p. 329.
DOI: https://doi.org/10.3390/ph17030329
45. Munin, A., et al., Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 2011. 3(4): p. 793-829.
DOI: https://doi.org/10.3390/pharmaceutics3040793
46. Carbonaro, M., et al., Chemico-physical and nutritional properties of traditional legumes (lentil, Lens culinaris L., and grass pea, Lathyrus sativus L.) from organic agriculture: an explorative study. Organic Agriculture, 2015. 5: p. 179-187.
DOI: https://doi.org/10.1007/s13165-014-0086-y
47. Yin, B., et al., Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. Journal of colloid and interface science, 2012. 380(1): p. 51-59.
DOI: https://doi.org/10.1016/j.jcis.2012.04.075
48. Hosseini, S.M.H., et al., Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds. Food Hydrocolloids, 2015. 50: p. 16-26.
DOI: https://doi.org/10.1016/j.foodhyd.2015.04.006
49. Mizrahy, S., et al., Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 2012. 41(7): p. 2623-2640.
DOI: https://doi.org/10.1039/C1CS15239D
50. Ajith, G., et al., Natural polysaccharides for wound healing, in Food, Medical, and Environmental Applications of Polysaccharides. 2021, Elsevier. p. 341-379.
DOI: https://doi.org/10.1016/B978-0-12-819239-9.00019-1
51. Sinha, V.R., et al., Polysaccharides in colon-specific drug delivery. International journal of pharmaceutics, 2001. 224(1-2): p. 19-38.
DOI: https://doi.org/10.1016/S0378-5173(01)00720-7
52. Duclairoir, C., et al., Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid and Polymer Science, 1998. 276: p. 321-327.
DOI: https://doi.org/10.1007/s003960050246
53. Urade, R., et al., Gliadins from wheat grain: An overview, from primary structure to nanostructures of aggregates. Biophysical reviews, 2018. 10: p. 435-443.
DOI: https://doi.org/10.1007/s12551-017-0367-2
54. Voci, S., et al., Gliadins as versatile biomaterials for drug delivery applications. 2021. 329: p. 385-400.
DOI: https://doi.org/10.1016/j.jconrel.2020.11.048
55. Joye, I.J., et al., Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. 2015. 185: p. 261-267.
DOI: https://doi.org/10.1016/j.foodchem.2015.03.128
56. Davidov-Pardo., et al., Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. 2015. 45: p. 309-316.
DOI: https://doi.org/10.1016/j.foodhyd.2014.11.023
57. Joye, I.J., et al., Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. 2015. 49: p. 127-134.
DOI: https://doi.org/10.1016/j.foodhyd.2015.02.038
58. Qiu, C., et al., Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. 2017. 69: p. 466-472.
DOI: https://doi.org/10.1016/j.foodhyd.2017.02.020
59. Wu, W., et al., Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride. 2020. 129: p. 109532.
DOI: https://doi.org/10.1016/j.lwt.2020.109532
60. Teng, F., et al., Preparation of polysaccharide-surfactant modified gliadin nanoparticles and loading with resveratrol. 2025. 302: p. 140541.
DOI: https://doi.org/10.1016/j.ijbiomac.2025.140541
61. Sun, X., et al., Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes as delivery vehicles for food bioactive ingredients: Formation, types, and applications. Gels, 2022. 8(2): p. 135.
DOI: https://doi.org/10.3390/gels8020135
62. Bealer, E.J., et al., Protein–polysaccharide composite materials: Fabrication and applications. Polymers, 2020. 12(2): p. 464.
DOI: https://doi.org/10.3390/polym12020464
63. Kumar, R., et al., Structure and mechanical properties of soy protein materials plasticized by thiodiglycol. Journal of applied polymer science, 2009. 111(2): p. 970-977.
DOI: https://doi.org/10.1002/app.29136
64. Lu, Y., et al., Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 2004. 5(3): p. 1046-1051.
DOI: https://doi.org/10.1021/bm034516x
65. Pujara, N., et al., Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. 2017. 488: p. 303-308.
DOI: https://doi.org/10.1016/j.jcis.2016.11.015
66. Zhang, L., et al., Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocolloids. 2018. p. 1-36.
DOI: https://doi.org/10.1016/j.foodhyd.2018.12.042
67. Fang, Z., et al., Effect of simultaneous treatment combining ultrasonication and pH-shifting on SPI in the formation of nanoparticles and encapsulating resveratrol. 2021. 111: p. 106250.
DOI: https://doi.org/10.1016/j.foodhyd.2020.106250
68. Li, W., et al., Soy protein isolate-polyguluronate nanoparticles loaded with resveratrol for effective treatment of colitis. Food Chemistry. 2023. 410: p. 135418.
DOI: https://doi.org/10.1016/j.foodchem.2023.135418
69. Zhong, M., et al., Dithiothreitol-induced reassembly of soybean lipophilic protein as a carrier for resveratrol: Preparation, structural characterization, and functional properties. 2023. 399: p. 133964.
DOI: https://doi.org/10.1016/j.foodchem.2022.133964
70. Cui, Q., et al., Fabrication of resveratrol-loaded soy protein isolate-glycyrrhizin nanocomplex for improving bioavailability via pH-responsive hydrogel properties. 2024. 258: p. 128950.
DOI: https://doi.org/10.1016/j.ijbiomac.2023.128950
71. Baba, W.N., et al., Whey protein–polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry, 2021. 365: p. 130455.
DOI: https://doi.org/10.1016/j.foodchem.2021.130455
72. Malaiya, A., et al., Intranasal resveratrol delivery to the brain with chitosan-decorated bovine serum albumin nanoparticles: Advancing Alzheimer's management in old female rats through QbD-based optimization, in vitro evaluation, and in vivo exploration. 2025: p. 143300.
DOI: https://doi.org/10.1016/j.ijbiomac.2025.143300
73. Cheng, H., et al., Complexation of trans-and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin. 2018. 81: p. 242-252.
DOI: https://doi.org/10.1016/j.foodhyd.2018.02.037
74. Fu, J.-j., et al., Formation mechanism of nanocomplex of resveratrol and glycated bovine serum albumin and their glycation-enhanced stability showing glycation extent. 2022. 155: p. 112916.
DOI: https://doi.org/10.1016/j.lwt.2021.112916
75. Fan, Y., et al., Resveratrol-loaded α-lactalbumin-chitosan nanoparticle-encapsulated high internal phase Pickering emulsion for curcumin protection and its in vitro digestion profile. 2022. 15: p. 100433.
DOI: https://doi.org/10.1016/j.fochx.2022.100433
76. Ma, W., et al., Preparation and characterization of nanocarriers based on polysaccharides from Lentinus edodes and bovine serum albumin and its photoprotection of resveratrol against UV radiation. 2023. 673: p. 131795.
DOI: https://doi.org/10.1016/j.colsurfa.2023.131795
77. Lam, A.C.Y., et al., Pea protein isolates: Structure, extraction, and functionality. Food reviews international, 2018. 34(2): p. 126-147.
DOI: https://doi.org/10.1080/87559129.2016.1242135
78. Fathi, M., et al., Protein‐based delivery systems for the nanoencapsulation of food ingredients. Comprehensive reviews in food science and food safety, 2018. 17(4): p. 920-936.
DOI: https://doi.org/10.1111/1541-4337.12360
79. Fan, Y., et al., Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. 2020. 152: p. 189-198.
DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.248
80. Guo, Q., et al., Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: Fabrication, characterization and delivery of resveratrol. 2020. 321: p. 126706.
DOI: https://doi.org/10.1016/j.foodchem.2020.126706
81. Guo, Q., et al., Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. 2021. 111: p. 106265.
82. Zhang, X., et al., Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. 2022. 160: p. 111713.
DOI: https://doi.org/10.1016/j.foodres.2022.111713
83. Yan, X., et al., Interfacial engineering of Pickering emulsions stabilized by pea protein-alginate microgels for encapsulation of hydrophobic bioactives. 2024. 460: p. 140761.
DOI: https://doi.org/10.1016/j.foodchem.2024.140761
84. Xu, Y., et al., Assembly of zein–polyphenol conjugates via carbodiimide method: Evaluation of physicochemical and functional properties. Lwt, 2022. 154: p. 112708.
DOI: https://doi.org/10.1016/j.lwt.2021.112708
85. Chen, S., et al., Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol. Carbohydrate Polymers, 2020. 236: p. 116090.
DOI: https://doi.org/10.1016/j.carbpol.2020.116090
86. Irache, J.M., et al., Zein nanoparticles as vehicles for oral delivery purposes. Taylor & Francis. 2017, p. 1209-1211.
DOI: https://doi.org/10.2217/nnm-2017-0075
87. Liang, H., et al., Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015. 136: p. 1224-1233.
DOI: https://doi.org/10.1016/j.colsurfb.2015.09.037
88. Sun, C., et al., Simultaneous treatment of heat and high pressure homogenization of zein in ethanol–water solution: Physical, structural, thermal and morphological characteristics. Innovative Food Science & Emerging Technologies, 2016. 34: p. 161-170.
DOI: https://doi.org/10.1016/j.ifset.2016.01.016
89. Pauluk, D., et al., Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food hydrocolloids, 2019. 94: p. 411-417.
DOI: https://doi.org/10.1016/j.foodhyd.2019.03.042
90. Huang, X., et al., Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids. 2019. 93: p. 261-269.
DOI: https://doi.org/10.1016/j.foodhyd.2019.02.039
91. Wei, Y., et al., Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. 2019. 95: p. 336-348.
DOI: https://doi.org/10.1016/j.foodhyd.2019.04.048
92. Wei, Y., et al., Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. 2020. 106: p. 10588.
DOI: https://doi.org/10.1016/j.foodhyd.2020.105886
93. Liu, Q., et al., Development of self-assembled zein-fucoidan complex nanoparticles as a delivery system for resveratrol. 2022. 216: p. 112529.
DOI: https://doi.org/10.1016/j.colsurfb.2022.112529
94. Liu, Y., et al., Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. 2022. 153: p. 112331.
DOI: https://doi.org/10.1016/j.lwt.2021.112331
95. Zhang, L., et al., Fabrication and characterization of novel prolamin nanoparticle-filled starch gels incorporating resveratrol. 2024. 268: p. 131764.
DOI: https://doi.org/10.1016/j.ijbiomac.2024.131764
96. Sharifi-Rad, J., et al., Resveratrol-based nanoformulations as an emerging therapeutic strategy for cancer. Frontiers in molecular biosciences, 2021. 8: p. 649395.
DOI: https://doi.org/10.3389/fmolb.2021.649395
97. Bu, L., et al., Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. International journal of pharmaceutics, 2013. 452(1-2): p. 355-362.
DOI: https://doi.org/10.1016/j.ijpharm.2013.05.007
98. Wang, L., et al., Lecithin-polysaccharide self-assembled microspheres for resveratrol delivery. Antioxidants, 2022. 11(9): p. 1666.
DOI: https://doi.org/10.3390/antiox11091666
99. Guo, Q., et al., Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 2021. 111: p. 106265.
DOI: https://doi.org/10.1016/j.foodhyd.2020.106265
100. Wei, Y., et al., The construction of resveratrol-loaded protein–polysaccharide–tea saponin complex nanoparticles for controlling physicochemical stability and in vitro digestion. Food & function, 2020. 11(11): p. 9973-9983.
DOI: https://doi.org/10.1039/D0FO01741H
101. Liu, F., et al., Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food hydrocolloids, 2018. 79: p. 450-461.
DOI: https://doi.org/10.1016/j.foodhyd.2018.01.017
102. Xu, Y.-Y., et al., Resveratrol-loaded ovalbumin/Porphyra haitanensis polysaccharide composite nanoparticles: Fabrication, characterization and antitumor activity. Journal of Drug Delivery Science and Technology, 2021. 66: p. 102811.
DOI: https://doi.org/10.1016/j.jddst.2021.102811
103. Yang, J., et al., Resveratrol‐loaded pH‐responsive Mesona chinensis polysaccharides‐zein nanoparticles for effective treatment of ulcerative colitis. Journal of the Science of Food and Agriculture, 2024. 104(7): p. 3992-4003.
DOI: https://doi.org/10.1002/jsfa.13282
104. Shi, Q., et al., In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol. 2021. 9(7): p. 3530-3537.
DOI: https://doi.org/10.1002/fsn3.2302
105. Rai, G., et al., Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight. Phytomedicine, 2016. 23(3): p. 233-242.
DOI: https://doi.org/10.1016/j.phymed.2015.12.020
106. Yang, S., et al., Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC cancer, 2015. 15: p. 1-11.
DOI: https://doi.org/10.1186/s12885-015-1958-6
107. Albuquerque, R.V., et al., In vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells. PLoS One, 2015. 10(8): p. e0134768.
DOI: https://doi.org/10.1371/journal.pone.0134768
108. Liu, F.-C., et al., Anti‐Inflammatory and organ‐protective effects of resveratrol in trauma‐hemorrhagic injury. Mediators of inflammation, 2015. 2015(1): p. 643763.
DOI: https://doi.org/10.1155/2015/643763
109. Rahman, M.H., et al., Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer's disease. Frontiers in pharmacology, 2020. 11: p. 619024.
DOI: https://doi.org/10.3389/fphar.2020.619024
110. Cheserek, M.J., et al., Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity. The Journal of nutritional biochemistry, 2016. 33: p. 36-44.
DOI: https://doi.org/10.1016/j.jnutbio.2016.02.008
111. Yazgan, Ü.C., et al., Comparison of the anti-diabetic effects of resveratrol, gliclazide and losartan in streptozotocin-induced experimental diabetes. Archives of physiology and biochemistry, 2015. 121(4): p. 157-161.
DOI: https://doi.org/10.3109/13813455.2015.1062898
112. Alavi, M., et al., Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 2019. 34(1): p. 20180032.
DOI: https://doi.org/10.1515/dmpt-2018-0032
113. Shi, L.-x., et al., Reversal effect of tyroservatide (YSV) tripeptide on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Cancer letters, 2008. 269(1): p. 101-110.
DOI: https://doi.org/10.1016/j.canlet.2008.04.033
114. Tapal, A., et al., Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chemistry, 2012. 130(4): p. 960-965.
DOI: https://doi.org/10.1016/j.foodchem.2011.08.025
115. Wang, Y., et al., Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles. Food chemistry, 2015. 188: p. 24-29.
DOI: https://doi.org/10.1016/j.foodchem.2015.04.127
116. Penalva, R., et al., Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of agricultural and food chemistry, 2015. 63(23): p. 5603-5611.
DOI: https://doi.org/10.1021/jf505694e