Grodziński P.: Rak i nanotechnologia – nowe lokalne terapie i techniki diagnostyczne, https://www.agh.edu.pl/blog-naukowy/info/article/rak-i-nanotechnologia-nowe-lokalne-terapie-i-techniki-diagnostyczne/
McNeil S. E.: Nanoparticle therapeutics: A personal perspective, Wiley Interdiscip. Rev. Nanomed. Nanobiotech., 2009, 1: 264-271.
DOI: https://doi.org/10.1002/wnan.6
Wender H., Andreazza M. L., Correia R. R. B., Teixeira S. R., Dupont J.: Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids, Nanoscale, 2011, 3: 1240-1245.
DOI: https://doi.org/10.1039/c0nr00786b
Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A.: Turkevich Method for Gold Nanoparticle Synthesis Revisited, J. Phys. Chem. B, 2006, 110: 15700-15707.
DOI: https://doi.org/10.1021/jp061667w
Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R.: Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System, Chem. Commun., 1994, 7: 801–802.
DOI: https://doi.org/10.1039/C39940000801
Manna A., Chen P., Akiyama H., Wei T., Tamada K., Knoll W.: Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides, Chem. Mater., 2003, 15: 20–28.
DOI: https://doi.org/10.1021/cm0207696
Perrault S.D., Chan W.C.W.: Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50-200 nm, J. Am. Chem. Soc., 2009, 131: 17042–17043.
DOI: https://doi.org/10.1021/ja907069u
Martin M.N., Basham J.I., Chando P., Eah S.-K.: Charged Gold Nanoparticles in Non-Polar Solvents: 10-min Synthesis and 2D Self-Assembly, Langmuir, 2010, 26: 7410–7417.
DOI: https://doi.org/10.1021/la100591h
Baigent C.L., Müller G.: A colloidal gold prepared using ultrasonics, Experientia, 1980, 36: 472-473.
DOI: https://doi.org/10.1007/BF01975154
Zhang J., Du J., Han B., Liu Z., Jiang T., Zhang Z.: Sonochemical Formation of Single-Crystalline Gold Nanobelts, Angew. Chem., 2006, 118: 1134–1137.
DOI: https://doi.org/10.1002/ange.200503762
Navarro J.R.G., Lerouge F., Cepraga C., Micouin G., Favier A., Chateau D., Charreyre M.-T., Lanoë P.-H., Monnereau C., Chaputa F., Marotte S., Leverrier Y., Marvel J., Kamada K., Andraud C., Baldeck P.L., Parola S.: Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic therapy, Biomaterials, 2013, 34: 8344-835.
DOI: https://doi.org/10.1016/j.biomaterials.2013.07.032
Sakai T. i in.: Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions, J. Phys. Chem. B, 2005, 109: 7766–7777.
DOI: https://doi.org/10.1021/jp046221z
Sharma R.K., Shikha G., Shilpa M.: Preparation of Gold Nanoparticles using Tea: A Green Chemistry Experiment, J. Chem. Edu., 2012, 89: 1316-1318.
DOI: https://doi.org/10.1021/ed2002175
Pattanayak M., Nayak P.L.: Green Synthesis of Gold Nanoparticles using Elettaria Cardamomum (ELAICHI) Aqueous Extract, World, 2013, 2: 1-5.
Chanda N. i in.: An Effective Strategy for the Synthesis of Biocompatible Gold Nanoparticles using Cinnamon Phytochemicals for Phantom CT Imaging and Photoacoustic Detection of Cancerous Cells, Pharmaceutical research, 2011, 28: 279-291.
DOI: https://doi.org/10.1007/s11095-010-0276-6
Chandran S.P., Chaudhary M., Pasricha R., Ahmad A., Sastry M.: Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract, Biotech. Prog., 2006, 22: 577-583.
DOI: https://doi.org/10.1021/bp0501423
Hvolbæk B., Janssens T.V.W., Clausen B.S., Falsig H., Christensen C.H., Nørskov J.K.: Catalytic activity of Au nanoparticles, Nano Today, 2007, 2: 14-18.
DOI: https://doi.org/10.1016/S1748-0132(07)70113-5
Gold Nanoparticles: Properties and Applications: http://www.sigmaaldrich.com/materials-science/nanomaterials/gold-nanoparticles.html
Hutter E., Fendler J.H.: Exploitation of Localized Surface Plasmon Resonance, Adv. Mat., 2004, 16: 1685-1706.
DOI: https://doi.org/10.1002/adma.200400271
Miranda A., Malheiro E., Skiba E., Quaresma P., Carvalho P. A., Eaton P, de Castro B., Shelnutt J. A., Pereira E.: One-pot synthesis of triangular gold nanoparticles allowing broad and fine tuning of edge length, Nanoscale, 2010, 2: 2209-2216.
DOI: https://doi.org/10.1039/c0nr00337a
Vigderman L., Zubarev E.R.: Starfruit-Shaped Gold Nanorods and Nanowires: Synthesis and SERS Characterization, Langmuir, 2012, 28: 9034-9040.
DOI: https://doi.org/10.1021/la300218z
Alkilany A. M., Murphy C. J.: Toxicity and cellular uptake od gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12: 2313-2333.
DOI: https://doi.org/10.1007/s11051-010-9911-8
Hainfeld J.F., Dilmanian F.A., Slatkin D.N., Smilowitz H.M.: Radiotherapy enhancement with gold nanoparticles, J. Pharm. Pharmacol., 2008, 60: 977-985.
DOI: https://doi.org/10.1211/jpp.60.8.0005
Mesbahi A.: A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer, Rep Pract Oncol Radiother, 2010, 15: 176-180.
DOI: https://doi.org/10.1016/j.rpor.2010.09.001
Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa G., Yousefi M., Jadidi-Niaragh F.: Nanoparticles and targeted drug delivery in cancer therapy, Immunol. Lett., 2017, 190: 64–83.
DOI: https://doi.org/10.1016/j.imlet.2017.07.015
Venkatesan R., Pichaimani A., Hari K., Balasubramanian P.K., Kulandaivel J., Premkumar K.: Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy, J. Mater. Chem. B, 2013, 1: 1010-1018.
DOI: https://doi.org/10.1039/C2TB00078D
Lim Z.-Z.J., Li J.-E.J., Ng C.-T., Yung L.-Y.L., Bay B.-H.: Gold nanoparticles in cancer therapy, Acta Pharm. Sinica, 2011, 32: 983-990.
DOI: https://doi.org/10.1038/aps.2011.82
Pan Y. i in.: Au nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage, Small, 2009, 5: 2067-2076.
DOI: https://doi.org/10.1002/smll.200900466
Yen H.J., Hsu S.H., Tsai C.L.: Cytotoxicity and immunological response of Au and silver nanoparticles of different sizes, Small, 2009, 5: 1553-1561.
DOI: https://doi.org/10.1002/smll.200900126
Li J., Zou L., Hartono D., Ong C., Bay B., Yung L.: Gold nanoparticles induce oxidative damage in lung fibroblasts, Adv. Mater., 2008, 20: 138-142.
DOI: https://doi.org/10.1002/adma.200701853
Kannan R., Katti K.V., Cutler C., Radioactive Gold Nanoparticles for Tumor Therapy. Cho S. H., Krishnan S. (red.), Cancer Nanotechnology: Principles and Applications in Radiation Oncology (s. 157-162), CRC Press 2013.
Chu S.Y.F., Ekström L.P., Firestone R.B.: The Lund/LBNL Nuclear Data Search: http://nucleardata.nuclear.lu.se/toi/index.asp
Iram F., Iqbal M.S, Khan I.U., Rasheed R., Khalid A., Khalid M., Aftab S., Shakoori A.R.: Synthesis and Biodistribution Study of Biocompatible 198Au Nanoparticles by use of Arabinoxylan as Reducing and in vitro Stabilizing Agent, Biol. Trace Elem. Res., 2019, 1-12.
DOI: https://doi.org/10.1007/s12011-019-01700-y
Al-Yasiri A.Y., Khoobchandani M., Cutler C.S., Watkinson L, Carmack T., Smith C.J., Kuchuk M., Loyalka S.K., Lugão A.B., Katti K.V.: Mangiferin functionalized radioactive gold nanoparticles (MGF198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy, Dalton Trans., 2017, 46: 14561-14571.
DOI: https://doi.org/10.1039/C7DT00383H
Hao H., Yin Z., Jiangtao S., Weibo C.: Molecular imaging and therapy of cancer with radiolabeled nanoparticles, Nano Today, 2009, 4: 399-413.
DOI: https://doi.org/10.1016/j.nantod.2009.07.001
Huang X., Jain P., El-Sayed I., El-Sayed M.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 2008, 23: 217–228.
DOI: https://doi.org/10.1007/s10103-007-0470-x
Koch A., Reynolds F., Merkle H., Weissleder R., Josephson L.: Transport of surface-modified nanoparticles through cell monolayers, Chembiochem, 2005, 6: 337–345.
DOI: https://doi.org/10.1002/cbic.200400174
Cui T., Liang J.J., Chen H., Geng D.D., Jiao L., Yang J.Y., Qian H., Zhang C., Ding Y.: Performance of Doxorubicin-Conjugated Gold Nanoparticles: Regulation of Drug Location, ACS Appl. Mater. Interfaces, 2017, 9: 8569-8580.
DOI: https://doi.org/10.1021/acsami.6b16669
Ramalingam V., Varunkumar K., Ravikumar V., Rajaram R.: Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer, Sci. Rep., 2018, 8: 3815.
DOI: https://doi.org/10.1038/s41598-018-22172-5
Farooq M.U., Novosad V., Rozhkova E.A., Wali H., Ali A., Fateh A.A., Neogi P.B., Neogi A., Wang Z.: Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells, Sci. Rep, 2018, 8: 2907.
DOI: https://doi.org/10.1038/s41598-018-21331-y
Gotov O., Battogtokh G., Shin D., Ko Y.T.: Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment, J. Ind. Eng. Chem., 2018, 65: 236-243.
DOI: https://doi.org/10.1016/j.jiec.2018.04.034
Zhao X., Pan J., Li W., Yang W., Qin L., Pan Y.: Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels, Int. J. Nanomed., 2018, 13: 6207-6221.
DOI: https://doi.org/10.2147/IJN.S176928
Wan J., Ma X., Xu D., Yang B., Yang S., Han S.: Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer, J. Photochem. Photobiol. B, 2018, 185: 73-79.
DOI: https://doi.org/10.1016/j.jphotobiol.2018.05.021
Gotov O., Battogtokh G., Ko Y.T.: Docetaxel-Loaded Hyaluronic Acid-Cathepsin B-Cleavable-Peptide-Gold Nanoparticles for the Treatment of Cancer, Mol. Pharm., 2018, 15: 4668-4676.
DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00640
Zhou W., Gao X., Liu D., Chen X.: Gold nanoparticles for in vitro diagnostics, Chem. Rev., 2015, 115: 10575–10636.
DOI: https://doi.org/10.1021/acs.chemrev.5b00100
Nam J.M., Thaxton C.S., Mirkin C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science, 2003, 301: 1884−1886.
DOI: https://doi.org/10.1126/science.1088755
Stoeva S.I., Lee J.S., Smith J.E., Rosen S.T., Mirkin C.A.: Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes, J. Am. Chem. Soc., 2006, 128: 8378-8379.
DOI: https://doi.org/10.1021/ja0613106
Andreou C., Kishore S.A., Kircher M.F.: Surface-enhanced Raman spectroscopy: a new modality for cancer imaging, J. Nucl. Med., 2015, 56: 1295-1299.
DOI: https://doi.org/10.2967/jnumed.115.158196
Wang X., Qian X., Beitler J.J., Chen Z.G., Khuri F.R., Lewis M.M., Shin H.J.C., Nie S., Shin D.M.: Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles, Cancer Res., 2011, 71: 1526−1532.
DOI: https://doi.org/10.1158/0008-5472.CAN-10-3069
Cutler J.I., Auyeung E., Mirkin C.A.: Spherical nucleic acids, J. Am. Chem. Soc., 2012, 134: 1376-1391.
DOI: https://doi.org/10.1021/ja209351u
Halo T.L., McMahon K.M., Angeloni N.L., Xu Y., Wang W., Chinen A.B., Malin D., Strekalova E., Cryns V.L., Cheng C., Mirkin C.A., Thaxton C.S.: NanoFlares for the detection, isolation, and culture of live tumor cells from human blood, Proc. Natl. Acad. Sci. USA, 2014, 111: 17104–17109.
DOI: https://doi.org/10.1073/pnas.1418637111
Peterson T.E., Furenlid L.R.: SPECT detectors: the Anger Camera and beyond, Phys. Med. Biol., 2011, 56: 145-182.
DOI: https://doi.org/10.1088/0031-9155/56/17/R01
Zhao Y., Pang B., Luehmann H. i in.: Gold nanoparticles doped with 199Au atoms and their use for targeted cancer imaging by SPECT, Adv. Healthc. Mater., 2016, 5: 928-935.
DOI: https://doi.org/10.1002/adhm.201500992
Currya T., Kopelmana R., Shilob M., Popovtzerb R.: Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy, Constrast Media Mol. I., 2014, 9: 53-61.
DOI: https://doi.org/10.1002/cmmi.1563
Cai Q.Y., Kim S.H., Choi K.S., Kim S.Y., Byun S.J., Kim K.W., Park S.H., Juhng S.K., Yoon K.H.: Colloidal gold nanoparticles as a bloodpool contrast agent for X-ray computed tomography in mice, Invest. Radiol., 2007, 42: 797−806.
DOI: https://doi.org/10.1097/RLI.0b013e31811ecdcd
Iranpour P., Ajamian M., Safavi A., Iranpoor N., Abbaspour A., Javanmardi S.: Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent, J. Mater. Sci. Mater. Med., 2018, 29: 48.
DOI: https://doi.org/10.1007/s10856-018-6053-5
Muddineti O.S., Ghosh B., Biswas S.: Current trends in using polymer coated gold nanoparticles for cancer therapy, Int. J. Pharm., 2015, 484: 252-267.
DOI: https://doi.org/10.1016/j.ijpharm.2015.02.038
Shi M., Paquette B., Thippayamontri T., Gendron L., Guérin B., Sanche L.: Increased radiosensitivity of colorectal tumors with intratumoral injection of low dose of gold nanoparticles, Int. J. Nanomed., 2016, 11: 5323-5333.
DOI: https://doi.org/10.2147/IJN.S97541
Li X., Takashima M., Yuba E., Harada A., Kono K.: PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy, Biomaterials, 2014, 35: 6576–6584.
DOI: https://doi.org/10.1016/j.biomaterials.2014.04.043
Xu Y., Wang J., Li X., Liu Y., Dai L., Wu X., Chen C.: Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia, Biomaterials, 2014, 35: 4667-4677.
DOI: https://doi.org/10.1016/j.biomaterials.2014.02.035
Foo Y.Y., Saw W.S., Periasamy V., Chong W.Y., Malek S.N.A., Tayyab S.: Green synthesised-gold nanoparticles in photothermal therapy of breast cancer, Micro & Nano Letters, 2019, 14: 470-474.
DOI: https://doi.org/10.1049/mnl.2018.5557
Wang R., Deng J., He D., Yang E., Yang W., Shi D., Jiang Y., Qiu Z., Webster T.J., Shen Y.: PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo, Nanomedicine, 2019, 16: 195-205.
DOI: https://doi.org/10.1016/j.nano.2018.12.005
Singh P., Pandit S., Mokkapati V.R.S.S., Garg A., Ravikumar V., Mijakovic I.: Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer, Int. J. Mol. Sci., 2018, 19: 1979.
DOI: https://doi.org/10.3390/ijms19071979
Libutti S.K., Paciotti G.F., Byrnes A.A., Alexander H.R., Jr., Gannon W.E., Walker M., Seidel G.D., Yuldasheva N., Tamarkin L.: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine, Clin. Cancer Res., 2010, 16: 6139–6149.
DOI: https://doi.org/10.1158/1078-0432.CCR-10-0978
Nilubol N., Yuan Z., Paciotti G.F., Tamarkin L., Sanchez C., Gaskins K., Freedman E.M., Cao S., Zhao J., Kingston D.G.I., Libutti S.K., Kebebew E.: Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors, J. Natl. Cancer Inst., 2018, 110: 1019-1029.
DOI: https://doi.org/10.1093/jnci/djy003
Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., Tewari A.K., Schwartz J.A., Canfield S.E., George A.K., West J.L., Halas N.J.: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study, Proc. Natl. Acad. Sci. USA, 2019, 116: 18590-18596.
DOI: https://doi.org/10.1073/pnas.1906929116
Kumthekar P., Rademaker A., Ko C., Dixit K., Schwartz M.A., Sonabend A.M., Sharp L., Lukas R.V., Stupp R., Horbinski C., McCortney K., Stegh A.H.: A phase 0 first-in-human study using NU-0129: A gold base spherical nucleic acid (SNA) nanoconjugate targeting BCL2L12 in recurrent glioblastoma patients, J. Clin. Oncol., 2019, 37: 3012-3012.
DOI: https://doi.org/10.1200/JCO.2019.37.15_suppl.3012
Amal H., Leja M., Funka K., Skapars R., Sivins A., Ancans G.,Liepniece-Karele I., Kikuste I., Lasina I., Haick H.: Detection of precancerous gastric lesions and gastric cancer through exhaled breath,Gut., 2016, 65: 400-407.
DOI: https://doi.org/10.1136/gutjnl-2014-308536
Bao C., Conde J., Polo E., del Pino P., Moros M., Baptista P.V., Grazu V., Cui D., de la Fuente J.M.: A promising road with challenges: where are gold nanoparticles in translational research?, Nanomedicine (Lond.), 2014, 9: 2353-2370.
DOI: https://doi.org/10.2217/nnm.14.155