Petersmann, A.; Nauck, M.; Müller-Wieland, D.; Kerner, W.; Müller, U.A.; Landgraf, R. i in. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2018,126(7),406–410. doi:10.1055/a-0584-6223
DOI: https://doi.org/10.1055/a-0584-6223
Angelopoulos T.P.; Tentolouris N.K.; Bertsias G.K.; Boumpas D.T. Steroid-induced diabetes in rheumatologic patients. Clin. Exp. Rheumatol. 2014, 32(1),126–30.
Fathallah, N.; Slim, R.; Larif, S.; Hmouda, H.; Ben Salem, C. Drug-Induced Hyperglycaemia and Diabetes. Drug. Saf. 2015,38(12),1153–68. doi:10.1007/s40264-015-0339-z
DOI: https://doi.org/10.1007/s40264-015-0339-z
Okruszko, M.A.; Szabłowski, M.; Pochodowicz, K.; Taranta-Janusz, K.; Bossowski, A.; Głowińska-Olszewska, B. Atypical diabetes mellitus in children – when to suspect drug-induced diabetes. A case-based review of the literature. Pediatr. Endocrinol. Diabetes. Me. 2022, 28(4), 294–300. doi:10.5114/pedm.2022.118398
DOI: https://doi.org/10.5114/pedm.2022.118398
Jain, V.; Patel, R.K.; Kapadia, Z.; Galiveeti, S.; Banerji, M.; Hope, L. Drugs and hyperglycemia: A practical guide. Maturitas 2017, 104, 80–83. doi:10.1016/j.maturitas.2017.08.006
DOI: https://doi.org/10.1016/j.maturitas.2017.08.006
Fève, B.; Scheen, A.J. When therapeutic drugs lead to diabetes. Diabetologia 2022, 65(5), 751–762. doi:10.1007/s00125-022-05666-w
DOI: https://doi.org/10.1007/s00125-022-05666-w
Hirst, J.A.; Farmer, A.J.; Feakins, B.G.; Aronson, J.K.; Stevens, R.J.; Quantifying the effects of diuretics and β-adrenoceptor blockers on glycaemic control in diabetes mellitus - a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2015, 79(5), 733–43. doi:10.1111/bcp.12543
DOI: https://doi.org/10.1111/bcp.12543
Bhattacharjee, S.; Bhattacharya, R.; Kelley, G.A.; Sambamoorthi, U. Antidepressant use and new-onset diabetes: a systematic review and meta-analysis. Diabetes/metabolism research and reviews 2013, 29(4), 273-284. doi:10.1002/dmrr.2393
DOI: https://doi.org/10.1002/dmrr.2393
Elena, C.; Chiara, M.; Angelica, B.; Chiara, M.A.; Laura, N.; Chiara, C.; i in. Hyperglycemia and Diabetes Induced by Glucocorticoids in Nondiabetic and Diabetic Patients: Revision of Literature and Personal Considerations. Curr. Pharm. Biotechnol. 2018, 19(15), 1210–1220. doi:10.2174/1389201020666190102145305
DOI: https://doi.org/10.2174/1389201020666190102145305
Hwang, J.L.; Weiss, R.E. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes. Metab. Res. Rev. 2014, 30(2), 96–102. doi:10.1002/dmrr.2486
DOI: https://doi.org/10.1002/dmrr.2486
Patel, D.A.; Kristensen, P.L.; Pedersen-Bjergaard, U.; Schultz, H.H. Glucocorticoid-induced diabetes and risk factors during high-dose therapy. Ugeskr. Laeger. 2018, 180(18), V06170454.
Descours, M.; Rigalleau, V. Glucocorticoid-induced hyperglycemia and diabetes: Practical points. Ann. Endocrinol. (Paris) 2023, 84(3), 353–6. doi:10.1016/j.ando.2023.03.011
DOI: https://doi.org/10.1016/j.ando.2023.03.011
Aberer, F.; Hochfellner, D.A.; Sourij, H.; Mader, J.K. A Practical Guide for the Management of Steroid Induced Hyperglycaemia in the Hospital. J. Clin. Med. 2021, 10(10), Art. No: 2154. doi:10.3390/jcm10102154
DOI: https://doi.org/10.3390/jcm10102154
Dąbrowski, P.; Majdan, M. Diagnosis and therapy of steroid-induced hyperglycemia based on literature reports. Wiad. Lek. 2016, 69(4), 642–5.
Phan, K.; Smith, S.D. Topical corticosteroids and risk of diabetes mellitus: systematic review and meta-analysis. J. Dermatolog. Treat. 2021, 32(3), 345–9. doi:10.1080/09546634.2019.1657224
DOI: https://doi.org/10.1080/09546634.2019.1657224
Miravitlles, M.; Auladell-Rispau, A.; Monteagudo, M.; Vázquez-Niebla J.C.; Mohammed, J.; Nuñez, A. i in. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur. Respir. Rev. 2021, 30(160), Art. No: 210075. doi:10.1183/16000617.0075-2021
DOI: https://doi.org/10.1183/16000617.0075-2021
Listyoko A.S.; Okazaki R.; Harada T.; Inui G.; Yamasaki A. Exploring the association between asthma and chronic comorbidities: impact on clinical outcomes. Front. Med. (Lausanne). 2024, 11, Art. No: 1305638. doi: 10.3389/fmed.2024.1305638. PMID: 38343638; PMCID: PMC10853455.
DOI: https://doi.org/10.3389/fmed.2024.1305638
Pu, X.; Liu, L.; Feng, B.; Zhang, Z.; Wang, G. Association between ICS use and risk of hyperglycemia in COPD patients: systematic review and meta-analysis. Respir. Res. 2021, 22(1), 201. doi:10.1186/s12931-021-01789-7
DOI: https://doi.org/10.1186/s12931-021-01789-7
Vidler, J.; Rogers, C.; Yallop, D.; Devereux, S.; Wellving, E.; Stewart, O. i in. Outpatient management of steroid-induced hyperglycaemia and steroid-induced diabetes in people with lymphoproliferative disorders treated with intermittent high dose steroids. J. Clin. Transl. Endocrinol. 2017, 9, 18–20. doi:10.1016/j.jcte.2017.06.003
DOI: https://doi.org/10.1016/j.jcte.2017.06.003
Drucis, M.; Irga-Jaworska, N.; Myśliwiec, M. Steroid-induced diabetes in the paediatric population. Pediatr. Endocrinol. Diabetes Metab. 2018, 24(3), 136–9. doi:10.5114/pedm.2018.80995
DOI: https://doi.org/10.5114/pedm.2018.80995
De Micheli, A. Corticosteroid induced diabetes mellitus: diagnosis and management. G. Ital. Nefrol. Malattie Metaboliche e Rene 2016, 33(S68), gin/33.S68.7.
Bell, D.S.H.; Goncalves, E. Diabetogenic effects of cardioprotective drugs. Diabetes. Obes. Metab. 2021, 23(4), 877–85. doi:10.1111/dom.14295
DOI: https://doi.org/10.1111/dom.14295
Fularska, K.; Oleszko, M.; Wąsiewicz, E.; Kuźniar, A.; Szawica, D. Beta-blockers used in cardiac failure and blood glucose level impairment - a literature review. J. Educ. Health Sport. 2023, 23(1), 40–51.
DOI: https://doi.org/10.12775/JEHS.2023.23.01.005
Zullo, A.R.; Hersey. M.; Lee, Y.; Sharmin, S.; Bosco, E.; Daiello, L.A. i in. Outcomes of „diabetes-friendly” vs „diabetes-unfriendly” β-blockers in older nursing home residents with diabetes after acute myocardial infarction. Diabetes. Obes. Metab. 2018, 20(12), 2724–32.
DOI: https://doi.org/10.1111/dom.13451
Mancia, G. Preventing new-onset diabetes in thiazide-treated patients. Lancet Diabetes Endocrinol. 2016, 4(2), 90–2.
DOI: https://doi.org/10.1016/S2213-8587(15)00391-5
Roth, J.; Müller, N.; Kuniss, N.; Wolf, G.; Müller, U.A. Association Between Glycaemic Control and the Intake of Thiazide Diuretics, Beta Blockers and Levothyroxine in People Without Diabetes. Exp. Clin. Endocrinol. Diabetes 2021, 129(6), 443–8. doi:10.1055/a-0919-4525
DOI: https://doi.org/10.1055/a-0919-4525
Shen, L.; Shah, B.R.; Reyes, E.M.; Thomas, L.; Wojdyla, D, Diem P, i in. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study. BMJ. 2013, 347, Art. No: f6745. doi:10.1136/bmj.f6745
DOI: https://doi.org/10.1136/bmj.f6745
Deuschle, M. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr. Opin. Psychiatry 2013, 26(1), 60–5. doi:10.1097/YCO.0b013e32835a4206
DOI: https://doi.org/10.1097/YCO.0b013e32835a4206
Wang, Y.; Liu, D.; Li, X.; Liu, Y.; Wu, Y. Antidepressants use and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis. J. Affect. Disord. 2021, 287, 41–53. doi:10.1016/j.jad.2021.03.023
DOI: https://doi.org/10.1016/j.jad.2021.03.023
Austin-Zimmerman, I.; Wronska, M.; Wang, B.; Irizar, H.; Thygesen, J.H.; Bhat, A.; i in. The Influence of CYP2D6 and CYP2C19 Genetic Variation on Diabetes Mellitus Risk in People Taking Antidepressants and Antipsychotics. Genes (Basel). 2021, 12(11), Art. No: 1758.
DOI: https://doi.org/10.3390/genes12111758
Owen, R.R.; Drummond, KL.; Viverito, K.M.; Marchant, K.; Pope, S.K.; Smith, J.L. i in. Monitoring and managing metabolic effects of antipsychotics: a cluster randomized trial of an intervention combining evidence-based quality improvement and external facilitation. Implement. Sci. 2013, 8, Art. No: 120. doi:10.1186/1748-5908-8-120
DOI: https://doi.org/10.1186/1748-5908-8-120
Pérez-Iglesias, R.; Martínez-García, O.; Pardo-Garcia, G.; Amado, J.A.; Garcia-Unzueta, MT.; Tabares-Seisdedos, R. i in. Course of weight gain and metabolic abnormalities in first treated episode of psychosis: the first year is a critical period for development of cardiovascular risk factors. Int. J. Neuropsychopharmacol. 2014, 17(1), 41–51. doi:10.1017/S1461145713001053
DOI: https://doi.org/10.1017/S1461145713001053
Grajales, D.; Ferreira, V.; Valverde, Á.M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells. 2019, 8(11), Art. No: 1336. doi:10.3390/cells8111336
DOI: https://doi.org/10.3390/cells8111336
Kowalchuk, C.; Teo, C.; Wilson, V.; Chintoh, A.; Lam, L.; Agarwal, S.M. i in. In male rats, the ability of central insulin to suppress glucose production is impaired by olanzapine, whereas glucose uptake is left intact. J. Psychiatry. Neurosci. 2017, 42(6), 424–31. doi:10.1503/jpn.170092
DOI: https://doi.org/10.1503/jpn.170092
Crespo-Facorro, B.; Prieto, C.; Sainz, J. Schizophrenia gene expression profile reverted to normal levels by antipsychotics. Int. J. Neuropsychopharmacol. 2014, 18(4), Art. No: pyu066. doi:10.1093/ijnp/pyu066
DOI: https://doi.org/10.1093/ijnp/pyu066
Siskind, D.J.; Russell, A.W.; Gamble, C.; Winckel, K.; Mayfield, K.; Hollingworth, S. i in. Treatment of clozapine-associated obesity and diabetes with exenatide in adults with schizophrenia: A randomized controlled trial (CODEX). Diabetes. Obes. Metab. 2018, 20(4),1050–5. doi:10.1111/dom.13167
DOI: https://doi.org/10.1111/dom.13167
Larsen, J.R.; Vedtofte, L.; Holst, J.J.; Oturai, P.; Kjær, A.; Corell, C.U. i in. Does a GLP-1 receptor agonist change glucose tolerance in patients treated with antipsychotic medications? Design of a randomised, double-blinded, placebo-controlled clinical trial. BMJ Open 2014, 4(3), Art. No: e004227. doi:10.1136/bmjopen-2013-004227
DOI: https://doi.org/10.1136/bmjopen-2013-004227
Casula, M.; Mozzanica, F.; Scotti, L.; Tragni, E.; Pirillo, A.; Corrao, G. i in. Statin use and risk of new-onset diabetes: A meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2017, 27(5), 396–406. doi:10.1016/j.numecd.2017.03.001
DOI: https://doi.org/10.1016/j.numecd.2017.03.001
Galicia-Garcia, U.; Jebari, S.; Larrea-Sebal, A.; Uribe K.B.; Siddiqi, H.; Ostolaza, H. i in. Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int. J. Mol. Sci. 2020, 21(13), Art. No: 4725. doi:10.3390/ijms21134725
DOI: https://doi.org/10.3390/ijms21134725
Swerdlow, D.I.; Preiss, D. Genetic insights into statin-associated diabetes risk. Curr. Opin. Lipidol. 2016, 27(2), 125–30. doi:10.1097/MOL.0000000000000272
DOI: https://doi.org/10.1097/MOL.0000000000000272
Climent, E.; Benaiges, D.; Pedro-Botet, J. Statin treatment and increased diabetes risk. Possible mechanisms. Clin. Investig. Arterioscler. 2019, 31(5), 228–32. doi:10.1016/j.arteri.2018.12.001
DOI: https://doi.org/10.1016/j.arteri.2018.12.001
McCann, K.; Shah, S.; Hindley, L.; Hill, A.; Qavi, A.; Simmons, B. i in. Implications of weight gain with newer anti-retrovirals: 10-year predictions of cardiovascular disease and diabetes. AIDS 2021, 35(10), 1657–65. doi:10.1097/QAD.0000000000002930
DOI: https://doi.org/10.1097/QAD.0000000000002930
Nansseu, J.R.; Bigna, J.J.; Kaze, A.D.; Noubiap, J.J. Incidence and Risk Factors for Prediabetes and Diabetes Mellitus Among HIV-infected Adults on Antiretroviral Therapy: A Systematic Review and Meta-analysis. Epidemiology 2018, 29(3), 431–41. doi:10.1097/EDE.0000000000000815
DOI: https://doi.org/10.1097/EDE.0000000000000815
Nduka, C.U.; Stranges, S.; Kimani, P.K.; Sarki, A.M.; Uthman, O.A. Is there sufficient evidence for a causal association between antiretroviral therapy and diabetes in HIV-infected patients? A meta-analysis. Diabetes Metab. Res. Rev. 2017, 33(6), Art. No: e2902. doi:10.1002/dmrr.2902
DOI: https://doi.org/10.1002/dmrr.2902
Mesfin Belay, D.; Alebachew Bayih, W.; Yeshambel Alemu, A.; Kefale Mekonen, D.; Eshetie Aynew, Y.; Senbeta Jimma, M. i in. Diabetes mellitus among adults on highly active anti-retroviral therapy and its associated factors in Ethiopia: Systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2021, 182, 109125. doi:10.1016/j.diabres.2021.109125
DOI: https://doi.org/10.1016/j.diabres.2021.109125
Echecopar-Sabogal, J.; D’Angelo-Piaggio, L.; Chanamé-Baca, D.M.; Ugarte-Gil, C. Association between the use of protease inhibitors in highly active antiretroviral therapy and incidence of diabetes mellitus and/or metabolic syndrome in HIV-infected patients: A systematic review and meta-analysis. Int. J. STD. AIDS. 2018, 29(5), 443–52. doi:10.1177/0956462417732226
DOI: https://doi.org/10.1177/0956462417732226
Spinner, C.D.; Schulz, S.; Bauer, U.; Schneider, J.; Bobardt, J.; Werder, A.V. i in. Effects of antiretroviral combination therapies F/TAF, E/C/F/TAF and R/F/TAF on insulin resistance in healthy volunteers: The TAF-IR Study. Antiviral Therapy. 2018, 23(7), 629–32.
DOI: https://doi.org/10.3851/IMP3271
Tadesse, W.T.; Adankie, B.T.; Shibeshi, W.; Amogne, W.; Aklillu, E.; Engidawork, E. Prevalence and predictors of glucose metabolism disorders among People Living with HIV on combination antiretroviral therapy. PLoS One 2022, 17(1), Art. No: e0262604. doi:10.1371/journal.pone.0262604
DOI: https://doi.org/10.1371/journal.pone.0262604
Parise, R.; Deruiter, J.; Ren, J.; Govindarajulu, M.; Ramesh, S.; Nadar, RM. i in. Impact of COVID-19 therapy on hyperglycemia. Diab. Vasc. Dis. Res. 2022, 19(3), Art. No: 14791641221095091. doi:10.1177/14791641221095091
DOI: https://doi.org/10.1177/14791641221095091
Xia, J.; Yu, J.; Xu, H.; Zhou, Y.; Li, H.; Yin, S. i in. Comparative effects of vitamin and mineral supplements in the management of type 2 diabetes in primary care: A systematic review and network meta-analysis of randomized controlled trials. Pharmacol. Res. 2023, 188, Art. No: 106647. doi:10.1016/j.phrs.2023.106647
DOI: https://doi.org/10.1016/j.phrs.2023.106647
Kamanna, VS.; Ganji, S.H.; Kashyap, M.L. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol. 2013, 24(3), 239–45. doi:10.1097/MOL.0b013e3283613a68
DOI: https://doi.org/10.1097/MOL.0b013e3283613a68
Katsiki, N.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, DP. Nicotinic Acid and new-onset diabetes. Horm. Metab. Res. 2015, 47(7), 544–5. doi:10.1055/s-0034-1387703
DOI: https://doi.org/10.1055/s-0034-1387703
HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart. J. 2013, 34(17), 1279–91. doi:10.1093/eurheartj/eht055
DOI: https://doi.org/10.1093/eurheartj/eht055
Goldie, C.; Taylor, A.J.; Nguyen, P.; McCoy, C.; Zhao, X.Q.; Preiss, D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart 2016, 102(3), 198–203. doi:10.1136/heartjnl-2015-308055
DOI: https://doi.org/10.1136/heartjnl-2015-308055
Li, D.; Luo, N.; Ma, Q.; Li, SZ.; Shi, Q.; Cao, Y. i in. Excessive nicotinic acid increases methyl consumption and hydrogen peroxide generation in rats. Pharm. Biol. 2013, 51(1), 8–12. doi:10.3109/13880209.2012.697175
DOI: https://doi.org/10.3109/13880209.2012.697175
Anděl, M.; Němcová, V.; Pavlíková, N.; Urbanová, J.; Cecháková, M.; Havlová, A. i in. [Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas]. Vnitr. Lek. 2014, 60(9), 684–90.
Sverkeli, L.J.; Hayat, F.; Migaud, M.E.; Ziegler, M. Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD. Biomolecules 2021, 11(7), Art. No: 1044. doi:10.3390/biom11071044
DOI: https://doi.org/10.3390/biom11071044
American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013, 37(Supplement_1), 81–90. doi:10.2337/dc14-S081
DOI: https://doi.org/10.2337/dc14-S081
Hafiz, S.; Kyriakopoulos, C. Pentamidine. W: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cytowane 12 listopada 2023]. Dostępne na: http://www.ncbi.nlm.nih.gov/books/NBK557586/
Román-Álamo, L.; Allaw, M.; Avalos-Padilla, Y.; Manca M.L.; Manconi, M.; Fulgheri, F. i in. In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis. Pharmaceutics 2023, 15(4), Art. No: 1163. doi:10.3390/pharmaceutics15041163
DOI: https://doi.org/10.3390/pharmaceutics15041163
Gadelha, E.P.N.; Ramasawmy, R.; Oliveira, B da C.; Rocha, N.M.; Guerra, JA de O.; Silva, GAVR da. i in. An open label randomized clinical trial comparing the safety and effectiveness of one, two or three weekly pentamidine isethionate doses (seven milligrams per kilogram) in the treatment of cutaneous leishmaniasis in the Amazon Region. PLOS Neglected Tropical Diseases 2018, 12(10), Art. No: e0006850. doi:10.1371/journal.pntd.0006850
DOI: https://doi.org/10.1371/journal.pntd.0006850
Srinivas, N.R.; Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur. J. Drug. Metab. Pharmacokinet. 2015, 40(1), 1–12. doi:10.1007/s13318-014-0186-9
DOI: https://doi.org/10.1007/s13318-014-0186-9
Araujo, J.; Paradis, A.; Mendes, J.; Petrik, S.; de Rivera, C. Induction of Type I Diabetes Mellitus in Beagle Dogs Using Alloxan and Streptozotocin. Curr. Protoc. 2022, 2(11), Art. No: e580. doi:10.1002/cpz1.580
DOI: https://doi.org/10.1002/cpz1.580
Pérez-Bermejo, M.; Mas-Pérez, I.; Murillo-Llorente, M.T. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines. 2021, 9(6), 666.
doi:10.3390/biomedicines9060666
DOI: https://doi.org/10.3390/biomedicines9060666
Farrugia, F.; Aquilina, A.; Vassallo, J.; Pace, N.P. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. Int. J. Environ. Res. Public. Health. 2021,18(2), 716. doi:10.3390/ijerph18020716
DOI: https://doi.org/10.3390/ijerph18020716
Tudurí, E.; Marroqui, L.; Dos Santos, R.S.; Quesada, I.; Fuentes, E.; Alonso-Magdalena, P. Timing of Exposure and Bisphenol-A: Implications for Diabetes Development. Front. Endocrinol. (Lausanne). 2018, 9, Art. No: 648. doi:10.3389/fendo.2018.00648
DOI: https://doi.org/10.3389/fendo.2018.00648
Provvisiero, D.P.; Pivonello, C.; Muscogiuri, G.; Negri, M.; de Angelis, C.; Simeoli, C.; i in. Influence of Bisphenol A on Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public. Health. 2016, 13(10), Art. No: 989. doi:10.3390/ijerph13100989
DOI: https://doi.org/10.3390/ijerph13100989
Martínez-Pinna, J.; Sempere-Navarro, R.; Medina-Gali, R.M.; Fuentes, E.; Quesada, I.; Sargis, R.M.; i in. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2023, 324(6), E488–505. doi:10.1152/ajpendo.00068.2023
DOI: https://doi.org/10.1152/ajpendo.00068.2023
Hwang, S.; Lim, J.E.; Choi, Y.; Jee, S.H. Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis. BMC Endocr. Disord. 2018,18(1), Art. No: 81. doi:10.1186/s12902-018-0310-y
DOI: https://doi.org/10.1186/s12902-018-0310-y
Khalil, W.J.; Akeblersane, M.; Khan, A.S.; Moin, A.S.M.; Butler, A.E. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int. J. Mol. Sci. 2023, 24(10), Art. No: 8870. doi:10.3390/ijms24108870
DOI: https://doi.org/10.3390/ijms24108870
Ma, C.; Wei, D.; Wang, L.; Xu, Q.; Wang, J.; Shi, J. i in. Co-exposure of organophosphorus pesticides is associated with increased risk of type 2 diabetes mellitus in a Chinese population. Chemosphere. 2023, 332, 138865. doi:10.1016/j.chemosphere.2023.138865
DOI: https://doi.org/10.1016/j.chemosphere.2023.138865
Chung, Y.L.; Hou, Y.C.; Wang, I.K.; Lu, K.C.; Yen, T.H. Organophosphate pesticides and new-onset diabetes mellitus: From molecular mechanisms to a possible therapeutic perspective. World. J. Diabetes. 2021, 12(11), 1818–31. doi:10.4239/wjd.v12.i11.1818
DOI: https://doi.org/10.4239/wjd.v12.i11.1818
Zhao, L.; Liu, Q.; Jia, Y.; Lin, H.; Yu, Y.; Chen, X. i in. The Associations between Organophosphate Pesticides (OPs) and Respiratory Disease, Diabetes Mellitus, and Cardiovascular Disease: A Review and Meta-Analysis of Observational Studies. Toxics 2023, 11(9), Art. No: 741. doi:10.3390/toxics11090741
DOI: https://doi.org/10.3390/toxics11090741
Liu, S.H.; Lin, J.L.; Shen, H.L.; Chang, C.C.; Huang, W.H.; Weng, C.H. i in. Acute large-dose exposure to organophosphates in patients with and without diabetes mellitus: analysis of mortality rate and new-onset diabetes mellitus. Environ. Health. 2014, 13, Art. No: 11. doi:10.1186/1476-069X-13-11
DOI: https://doi.org/10.1186/1476-069X-13-11
Evangelou, E.; Ntritsos, G.; Chondrogiorgi, M.; Kavvoura, F.K.; Hernández, A.F.; Ntzani, E.E. i in. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environment International. 2016, 91, 60–8. doi:10.1016/j.envint.2016.02.013
DOI: https://doi.org/10.1016/j.envint.2016.02.013
Xiao, X.; Clark, J.M.; Park, Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food. Chem. Toxicol. 2017, 105, 456–74. doi:10.1016/j.fct.2017.05.003
DOI: https://doi.org/10.1016/j.fct.2017.05.003
Yusuf Habibullah, K.O.; Ito, R.; Stari, L.; Kishida, K.; Ohtsubo, Y.; Masai, E. i in. Degradation of DDT by γ-hexachlorocyclohexane dehydrochlorinase LinA. Biosci. Biotechnol. Biochem. 2023, 88(1), 123–30.
doi:10.1093/bbb/zbad141
DOI: https://doi.org/10.1093/bbb/zbad141
Yipei, Y.; Zhilin, L.; Yuhong, L.; Meng, W.; Huijun, W.; Chang, S. i in. Assessing the risk of diabetes in participants with DDT DDE exposure- A systematic review and meta-analysis. Environ. Res. 2022, 210, Art. No: 113018. doi:10.1016/j.envres.2022.113018
DOI: https://doi.org/10.1016/j.envres.2022.113018
Elmore, S.E.; La Merrill, M.A. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. (Lausanne). 2019, 10, Art. No: 122.
doi:10.3389/fendo.2019.00122
DOI: https://doi.org/10.3389/fendo.2019.00122
Pavlikova, N.; Smetana, P.; Halada, P.; Kovar, J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. Environ. Res. 2015, 142, 257–63. doi:10.1016/j.envres.2015.06.046
DOI: https://doi.org/10.1016/j.envres.2015.06.046
Cetkovic-Cvrlje, M.; Olson, M.; Schindler, B.; Gong, H.K. Exposure to DDT metabolite p,p’-DDE increases autoimmune type 1 diabetes incidence in NOD mouse model. J. Immunotoxicol. 2016, 13(1), 108–18.
doi:10.3109/1547691X.2015.1017060
DOI: https://doi.org/10.3109/1547691X.2015.1017060
Javaid, A.; Akbar, I.; Javed, H.; Khan, U.; Iftikhar, H.; Zahra, D.; i in. Role of Heavy Metals in Diabetes: Mechanisms and Treatment Strategies. Crit. Rev. Eukaryot. Gene. Expr. 2021, 31(3), 65–80.
doi:10.1615/CritRevEukaryotGeneExpr.2021037971
DOI: https://doi.org/10.1615/CritRevEukaryotGeneExpr.2021037971
Sha, W.; Hu, F.; Xi, Y.; Chu, Y.; Bu, S. Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus. J. Diabetes. Res. 2021, 2021, Art. No: 9999612.
doi:10.1155/2021/9999612
DOI: https://doi.org/10.1155/2021/9999612
Bjørklund G, Dadar M, Pivina L, Doşa MD, Semenova Y, Aaseth J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr. Med. Chem. 2020, 27(39), 6643–57. doi:10.2174/0929867326666190902122155
DOI: https://doi.org/10.2174/0929867326666190902122155
Cai, J.; Li, Y.; Liu, S.; Liu, Q.; Min, Xu.; Zhang, J.; i in. Associations between multiple heavy metals exposure and glycated hemoglobin in a Chinese population. Chemosphere 2022, 287(Pt 2), Art. No: 132159. doi:10.1016/j.chemosphere.2021.132159
DOI: https://doi.org/10.1016/j.chemosphere.2021.132159
Chang, W.; Li, P. Copper and Diabetes: Current Research and Prospect. Mol. Nutr. Food. Res. 2023, 67(23), Art.No: e2300468. doi:10.1002/mnfr.202300468
DOI: https://doi.org/10.1002/mnfr.202300468
Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules. 2023, 13(5), Art. No: 799. doi:10.3390/biom13050799
DOI: https://doi.org/10.3390/biom13050799
Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox. Biol. 2022, 50, Art. No: 102236. doi:10.1016/j.redox.2022.102236
DOI: https://doi.org/10.1016/j.redox.2022.102236
Hong, H.; Xu, Y.; Xu, J.; Zhang, J.; Xi, Y.; Pi, H. i in. Cadmium exposure impairs pancreatic β-cell function and exaggerates diabetes by disrupting lipid metabolism. Environ. Int. 2021, 149, Art. No: 106406. doi:10.1016/j.envint.2021.106406
DOI: https://doi.org/10.1016/j.envint.2021.106406
Filippini, T.; Wise, L.A.; Vinceti, M. Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis. Environ. Int. 2022, 158, Art. No: 106920. doi:10.1016/j.envint.2021.106920
DOI: https://doi.org/10.1016/j.envint.2021.106920
Hendryx, M.; Luo, J.; Chojenta, C.; Byles, J.E. Exposure to heavy metals from point pollution sources and risk of incident type 2 diabetes among women: a prospective cohort analysis. Int. J. Environ. Health Res. 2021, 31(4), 453–64. doi:10.1080/09603123.2019.1668545
DOI: https://doi.org/10.1080/09603123.2019.1668545
Tuculina, M.J.; Perlea, P.; Gheorghiță, M.; Cumpătă C.N.; Dascălu, I.T.; Turcu, A.; i in. Diabetes mellitus: Plasticizers and nanomaterials acting as endocrine-disrupting chemicals (Review). Exp. Ther. Med. 2022, 23(4), Art. No: 288. doi:10.3892/etm.2022.11217
DOI: https://doi.org/10.3892/etm.2022.11217
Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E. i in. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903.
doi:10.1016/j.envint.2021.106903
DOI: https://doi.org/10.1016/j.envint.2021.106903
Zhang, H.; Ben, Y.; Han, Y.; Zhang, Y.; Li, Y.; Chen, X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. Environ. Res. 2022, 204, Art. No: 112109. doi:10.1016/j.envres.2021.112109
DOI: https://doi.org/10.1016/j.envres.2021.112109
Mariana, M.; Cairrao, E. The Relationship between Phthalates and Diabetes: A Review. Metabolites. 2023, 13(6), Art. No: 746. doi:10.3390/metabo13060746
DOI: https://doi.org/10.3390/metabo13060746
Renzelli, V.; Gallo, M.; Morviducci, L.; Marino, G.; Ragni, A.; Tuveri, E. i in. Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers (Basel). 2023, 15(17), 4237. doi:10.3390/cancers15174237
DOI: https://doi.org/10.3390/cancers15174237
Barton, B.B.; Segger, F.; Fischer, K.; Obermeier, M.; Musil, R. Update on weight-gain caused by antipsychotics: a systematic review and meta-analysis. Expert Opin Drug Saf. 2020, 19(3), 295–314. doi: 10.1080/14740338.2020.1713091
DOI: https://doi.org/10.1080/14740338.2020.1713091