1 Lu C, Wei J, Gao C, Sun M, Dong D, and Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol. 2025;144:113373. doi: 10.1016/j.intimp.2024.113373.
DOI: https://doi.org/10.1016/j.intimp.2024.113373
2 Altun İ, Sonkaya A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran J Public Health. 2018;47:1218.
3 Boire A, Burke K, Cox TR, Guise T, Jamal-Hanjani M, Janowitz T, Kaplan R, Lee R, Swanton C, Vander Heiden M, and Sahai E. Why do patients with cancer die? Nat Rev Cancer. Published Online First: 19 June 2024. doi: 10.1038/s41568-024-00708-4.
DOI: https://doi.org/10.1038/s41568-024-00708-4
4 Hanna TP, Kangolle AC. Cancer control in developing countries: using health data and health services research to measure and improve access, quality and efficiency. BMC Int Health Hum Rights. 2010;10:24. doi: 10.1186/1472-698X-10-24.
DOI: https://doi.org/10.1186/1472-698X-10-24
5 Rawat PS, Jaiswal A, Khurana A, Bhatti J, and Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139.
DOI: https://doi.org/10.1016/j.biopha.2021.111708
6 Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12:339. doi: 10.1038/s41419-021-03614-x.
DOI: https://doi.org/10.1038/s41419-021-03614-x
7 Zhang J, Sun Z, Lin N, Lin N., Lu W, Huang X, Weng J, Sun S, Zhang C, Yang Q, Zhou G, Guo H, and Chi J. Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed Pharmacother. 2020;130. doi: 10.1016/j.biopha.2020.110534.
DOI: https://doi.org/10.1016/j.biopha.2020.110534
8 Dulf PL, Mocan M, Coadă CA, Dulf D, Moldovan R, Baldea I, Farcas A, Blendea D, and Filip A. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:1105–15. doi: 10.1007/s00210-023-02382-z.
DOI: https://doi.org/10.1007/s00210-023-02382-z
9 Adeyemi DH, Obembe OO, Hamed MA, and Akhigbe R. Sodium acetate ameliorates doxorubicin-induced cardiac injury via upregulation of Nrf2/HO-1 signaling and downregulation of NFkB-mediated apoptotic signaling in Wistar rats. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:423–35. doi: 10.1007/s00210-023-02620-4
DOI: https://doi.org/10.1007/s00210-023-02620-4
10 Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, and Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother. 2020;122. doi: 10.1016/j.biopha.2019.109547.
DOI: https://doi.org/10.1016/j.biopha.2019.109547
11 Jiang Y, Zhang Q. Catalpol ameliorates doxorubicin induced inflammation and oxidative stress in H9C2 cells through PPAR γ activation. Exp Ther Med. 2020;20:1003–11. doi: 10.3892/etm.2020.8743.
DOI: https://doi.org/10.3892/etm.2020.8743
12 Ashrafian H, Czibik G, Bellahcene M, ksentijević D, Smith A, Mitchell S, Dodd M, Kirwan J, Byrne J, Ludwig C et al. Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway. Cell Metab. 2012;15:361–71. doi: 10.1016/j.cmet.2012.01.017.
DOI: https://doi.org/10.1016/j.cmet.2012.01.017
13 Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M, and Tian Z. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension. Cell Rep. 2017;19:1631–9. doi: 10.1016/j.celrep.2017.04.071.
DOI: https://doi.org/10.1016/j.celrep.2017.04.071
14 Tian Z, Liang M. Renal metabolism and hypertension. Nat Commun. 2021;12:963. doi: 10.1038/s41467-021-21301-5.
DOI: https://doi.org/10.1038/s41467-021-21301-5
15 Edosuyi O, Choi M, Igbe I, Oyekan A. Role of peroxisome proliferator-activated receptor (PPARα) in mediating renoprotective effects of fumarate. J. Pharm. Biores. 2025;22:37–44. doi: 10.4314/jpb.v22i1.4.
DOI: https://doi.org/10.4314/jpb.v22i1.4
16 Edosuyi O, Igbe I, Oyekan A. Fumarate and its downstream signalling pathways in the cardiorenal system: Recent insights and novel expositions in the etiology of hypertension. Eur J Pharmacol. 2023;961:176186. doi: 10.1016/j.ejphar.2023.176186.
DOI: https://doi.org/10.1016/j.ejphar.2023.176186
17 Renu K, V.G. A, P.B. TP, and Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy – An update. Eur J Pharmacol. 2018;818:241–53. doi: 10.1016/j.ejphar.2017.10.043.
DOI: https://doi.org/10.1016/j.ejphar.2017.10.043
18 Edosuyi O, Choi M, Igbe I, Oyekan A. Fumarate exerted an antihypertensive effect and reduced kidney injury molecule (KIM)-1 expression in deoxycorticosterone acetate-salt hypertension. Clin Exp Hypertens. 2021;43:555–64. doi: 10.1080/10641963.2021.1916943.
DOI: https://doi.org/10.1080/10641963.2021.1916943
19 Yilmaz A, Yalta K, Turgut OO, Yilmaz M, Ozyol A, Kendirlioglu O, Karadas F, and Tandogan I. Clinical Importance of Elevated CK-MB and Troponin I Levels in Congestive Heart Failure.
20 Ravkilde J, Nissen H, Horder M, Thygesen K, and Aaehus F.. Independent Prognostic Value of Serum Creatine Kinase Isoenzyme MB Mass, Cardiac Troponin T and Myosin Light Chain Levels in Suspected Acute Myocardial Infarction Analysis of 28 Months of Follow.Up in 196 Patients. 1995.
DOI: https://doi.org/10.1016/0735-1097(94)00430-X
21 Edosuyi O, Omo-Erhabor AJ. Effects of fumarate on cardiorenal injury markers in normotensive Wistar rats. J Pharm Allied Sci. 2024;21:4064–70.
22 Omo-Erhabor AJ, Edosuyi O. Fumarate ameliorated doxorubicin-induced nephrotoxicity: The role of pro-inflammatory cytokines and endothelial nitric oxide synthase signaling pathway. Trop. J Drug Res. 2024.
DOI: https://doi.org/10.26538/tjdr/v1i1.4
23 Edosuyi O, Choi M, Edosuyi V, Igbe I, and Oyekan A. Malate reduced kidney injury molecule (KIM-1) expression and selectively upregulated the renal nitric oxide production in obstructive nephropathy. Bratislava Med. J. 2023;124:151–7. doi: 10.4149/BLL_2023_024.
DOI: https://doi.org/10.4149/BLL_2023_024
24 Koroliuk MA, Ivanova LI, Maĭorova IG, and Tokarev V. [A method of determining catalase activity]. Lab Delo. 1988;16–9.
25 Bahrami S, Shahriari A, Tavalla M, Azadmanesh S, and Hamidinejat H.. Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii. Oxid Med Cell Longev. 2016;2016:1–6. doi: 10.1155/2016/8045969.
DOI: https://doi.org/10.1155/2016/8045969
26 Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.
27 Ibrahim MM, AL Sahli AAA, Alaraidh IA, Al-Homaidan A, Mostafa E, and El-Gaaly G. Assessment of antioxidant activities in roots of Miswak (Salvadora persica) plants grown at two different locations in Saudi Arabia. Saudi J Biol Sci. 2015;22:168–75. doi: 10.1016/j.sjbs.2014.11.019.
DOI: https://doi.org/10.1016/j.sjbs.2014.11.019
28 Olumegbon LT, Lawal AO, Oluyede DM, Adebimpe M, Elekofehinti O, and Umar H.. Hesperetin protects against diesel exhaust particles-induced cardiovascular oxidative stress and inflammation in Wistar rats. Environ. Sci. Pol. Res.h. 2022;29:52574–89. doi: 10.1007/s11356-022-19494-3.
DOI: https://doi.org/10.1007/s11356-022-19494-3
29 Elekofehinti OO, Lawal AO, Ejelonu OC, Molehin O, and Famusiwa C. Involvement of fat mass and obesity gene (FTO) in the anti-obesity action of Annona muricata Annonaceae: in silico and in vivo studies. J Diabetes Metab Disord. 2020;19:197–204. doi: 10.1007/s40200-020-00491-7.
DOI: https://doi.org/10.1007/s40200-020-00491-7
30 Baracos VE, Martin L, Korc M, Guttridge D, and Fearon K. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105. doi: 10.1038/nrdp.2017.105.
DOI: https://doi.org/10.1038/nrdp.2017.105
31 Hu C-M, Chen Y-H, Chiang MT, and Chau L . Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation. 2004;110:309–16. doi: 10.1161/01.CIR.0000135475.35758.23.
DOI: https://doi.org/10.1161/01.CIR.0000135475.35758.23
32 Rasola A, Bernardi P. Cell Calcium Mitochondrial permeability transition in Ca 2 + -dependent apoptosis and necrosis. Cell Cal. 2011;50:222–33. doi: 10.1016/j.ceca.2011.04.007.
DOI: https://doi.org/10.1016/j.ceca.2011.04.007
33 Jiang X, Qiao L, Feng X, Liu L, Wei Q, Wang X, Yu W, Qiao L, Feng X, Liu L, Wei Q, and Wang X. Rotenone induces nephrotoxicity in rats : oxidative damage and apoptosis Rotenone induces nephrotoxicity in rats : oxidative damage and apoptosis. 2017;6516. doi: 10.1080/15376516.2017.1333553.
DOI: https://doi.org/10.1080/15376516.2017.1333553
34 Omóbòwálé TO, Oyagbemi AA, Folasire AM, Ajibade T, Asenuga E, Adejumobi O, Ola-Davies O, Oyetola O, James G, Adedapo A, and Yakubu M. Ameliorative effect of gallic acid on doxorubicin-induced cardiac dysfunction in rats. J Basic Clin Physiol Pharmacol. 2018;29:19–27. doi: 10.1515/jbcpp-2016-0194.
DOI: https://doi.org/10.1515/jbcpp-2016-0194
35 Pan D-S, Li B, Wan S-L. Evaluation of biomarkers for doxorubicin induced cardiac injury in rats. Exp Ther Med. 2022;24. doi: 10.3892/etm.2022.11648.
DOI: https://doi.org/10.3892/etm.2022.11648
36 Loboda Y V., Korokin M V., Kuznetsov A V., Malorodova T, Danilenko A, Peresypkina A, Gudyrev T, Kopeva O, Pokrovskaya T, Korokina L, Khruslova V, Nazarenko V, Avtina T, Deikin A, Dolzhikov A, Puzanova T, and Danilenko L. Novel derivative of nicotinic acid ameliorates doxorubicin-induced cardiac injury via regulation of redox homeostasis. Res. Res. Pharmacol. 2024;10:85–93. doi: 10.18413/rrpharmacology.10.514.
DOI: https://doi.org/10.18413/rrpharmacology.10.514
37 Ahmad A. The Role of the Endogenous Antioxidant Enzymes and Malondialdehyde in Essential Hypertension. J Clin Diagnostic Res. 2013;7:987–90. doi: 10.7860/JCDR/2013/5829.3091.
DOI: https://doi.org/10.7860/JCDR/2013/5829.3091
38 Jacob R, Khan M. Cardiac Biomarkers: What Is and What Can Be. Indian J Cardiovasc Dis Women WINCARS. 2018;03:240–4. doi: 10.1055/s-0039-1679104.
DOI: https://doi.org/10.1055/s-0039-1679104
39 Kim K, Chini N, Fairchild DG, Engle S, Reagan W, Summers S, and Mirsalis J. Evaluation of Cardiac Toxicity Biomarkers in Rats from Different Laboratories. Toxicol Pathol. 2016;44:1072–83. doi: 10.1177/0192623316668276
DOI: https://doi.org/10.1177/0192623316668276
40 Chen PY, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Front Mol Biosci. 2023;10.
DOI: https://doi.org/10.3389/fmolb.2023.1113061
41 Jackson JW, Streich Jr FC, Pal A, Coricor G, Boston C, Brueckner C, Canonico K, Chapron C, Cote S, Dagbay K, Danehy Jr F, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin C, Wood M, Zawadzka A, Wawersik S, and Nicholis S. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. 2024.
DOI: https://doi.org/10.1126/scisignal.adn6052
42 Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14. doi: 10.1161/CIRCULATIONAHA.105.602532.
DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.602532
43 Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns H and Moens A. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52:1213–25. doi: 10.1016/j.yjmcc.2012.03.006.
DOI: https://doi.org/10.1016/j.yjmcc.2012.03.006
44 Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013;288:26464–72.
DOI: https://doi.org/10.1074/jbc.R113.472936
45 Pacher P, Josehph S. Beckman LL. Nitric Oxide and Peroxynitrite in Health and Disease PA´. Physiol Rev. 1995;87:315–424. doi: 10.1152/physrev.00029.2006.
DOI: https://doi.org/10.1152/physrev.00029.2006
46 Zheng X, Tian Z. Fumarate hydratase as a potential target to ameliorate salt sensitive hypertension. Int. J. Cardiol. Cardiovasc. Dis. 2022.
47 Anderson NM, Mucka P, Kern JG, Kem J. And Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37.
DOI: https://doi.org/10.1007/s13238-017-0451-1
48 Saura M, Zaragoza C, Herranz B, Griera M, Diez-Marques L, Rodriguez-Puyol D, and Rodriguez-PuyolM.. Nitric oxide regulates transforming growth factor-β signaling in endothelial cells. Circ Res. 2005;97:1115–23. doi: 10.1161/01.RES.0000191538.76771.66.
DOI: https://doi.org/10.1161/01.RES.0000191538.76771.66
49 Hasić, S., Jadrić, R., Kiseljaković, E., Mornjaković, Z., Winterhalter-Jadrić, M. Troponin t and histological characteristics of rat myocardial infarction induced by isoproterenol. Bosnian journal of basic medical sciences. Bos J. Basic Med. Sci, 2007:7;212-217.
DOI: https://doi.org/10.17305/bjbms.2007.3046