1. Krajowy Rejestr Nowotworów. Raporty. Available online: https://onkologia.org.pl/pl/raporty (accessed on 03.02.2025).
2. Age-Standardized Rate (World) per 100 000, Incidence and Mortality, Both sexes, in 2022. Available online: https://gco.iarc.who.int/today/en/dataviz/bars?types=0_1&mode=population(accessed on 03.02.2025).
3. Alergie w Polsce i na świecie – statystyki dotyczące alergii. Available online: https://www.alergologia.org/alergie-w-polsce-i-na-swiecie-statystyki-dotyczace-alergii/ (accessed on 03.02.2025).
4. Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015, 1 (3), 161-176. DOI: https://doi.org/10.1016/j.bsbt.2015.08.002
DOI: https://doi.org/10.1016/j.bsbt.2015.08.002
5. Vert, M. Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. J Mater Sci: Mater Med 2009, 20, 437–446. DOI: https://doi.org/10.1007/s10856-008-3581-4
DOI: https://doi.org/10.1007/s10856-008-3581-4
6. Middleton, J.C., Tipton, A.T. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21 (23), 2335-2346. DOI: https://doi.org/10.1016/S0142-9612(00)00101-0
DOI: https://doi.org/10.1016/S0142-9612(00)00101-0
7. Kronenthal, R.L. Biodegradable Polymers in Medicine and Surgery. In Polymers in Medicine and Surgery. Polymer Science and Technology; Kronenthal, R.L., Oser, Z., Martin, E., Eds;. Springer, Boston, USA, 1975, Volume 8, pp. 119-137.
DOI: https://doi.org/10.1007/978-1-4684-7744-3_9
8. Panayi, A.C.; Orgill, D.P. Current use of biological scaffolds in plastic surgery. Plast Reconstr Surg 2019, 143 (1), 209-220.
DOI: https://doi.org/10.1097/PRS.0000000000005102
9. Savencu, I.; Iurian, S.; Porfire, A.; Bogdan, C.; Tomuță, I. Review of advances in polymeric wound dressing films. React Funct Polym. 2021, 168, Art No. 105059. DOI: https://doi.org/10.1016/j. reactfunctpolym.2021.105059
DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.105059
10. Kozlov, A.A. Systemic Analysis of Deformation Properties of Polymer Textile Surgical Threads. Fibre Chem 2024, 56, 57–61. DOI: https://doi.org/10.1007/s10692-024-10516-z
DOI: https://doi.org/10.1007/s10692-024-10516-z
11. Ahlfeld, S.K.; Larson, R.L.; Collins, H.R. Anterior cruciate reconstruction in the chronically unstable knee using an expanded polytetrafluoroethylene (PTFE) prosthetic ligament. Am J Sports Med. 1987, 15 (4), 326-330. DOI: 10.1177/036354658701500406
DOI: https://doi.org/10.1177/036354658701500406
12. Catanese, J. 3rd; Cooke, D.; Maas, C.; Pruitt, L. Mechanical properties of medical grade expanded polytetrafluoroethylene: the effects of internodal distance, density, and displacement rate. J Biomed Mater Res. 1999, 48 (2), 187-192. DOI: 10.1002/(sici)1097-4636(1999)48:2<187::aid-jbm13>3.0.co;2-m
DOI: https://doi.org/10.1002/(SICI)1097-4636(1999)48:2<187::AID-JBM13>3.0.CO;2-M
13. Barae, J. A Mini-Review on the Safety of PTFE as a Cosmetic Ingredient. JNST 2024, 1 (2), 1-3. DOI: 10.61833/JNST.2024.0003
DOI: https://doi.org/10.61833/JNST.2024.0003
14. Campbell, A.; Shumrick, Kevin A. The use of expanded polytetrafluoroethylene in facial reconstruction and facial cosmetic surgery. Curr Opin Otolaryngol Head Neck Surg. 1996, 4 (4), 249-252.
DOI: https://doi.org/10.1097/00020840-199608000-00006
15. Wang, K.; Chen, M.; Yu, B.; Guo, Z. Comparison of Clinical Results of Crescent-Shaped Expanded Polytetrafluoroethylene (e-PTFE) and Granulated Rib Cartilage for Filling The Nasal Base to correct Midface Depressions. Altern Ther Health Med. 2024, 30 (1), 434-440.
16. Vicente, J.; Ramírez-Camacho, R.; Trinidad, A.; Ramón García-Berrocal, J.; Lobo, D.; Pinilla, M. Anti-adhesive properties of polytetrafluoroethylene (Gore-Tex) in middle ear surgery. An experimental study. Acta Otolaryngol. 2006, 126 (2), 144-148. DOI: 10.1080/00016480500312570
DOI: https://doi.org/10.1080/00016480500312570
17. Malafronte, G. Prostheses for middle ear ossicular chain reconstruction. In Prostheses: Design, Types and Complications; Colombo, D.F; Rossi G.S., Eds.: Publisher: Nova Biomedical, USA, 2012; pp. 83-95.
18. Lerouge, S.; Simmons, A. Sterilisation of Biomaterials and Medical Devices. Woodhead Publishing, England, 2012.
DOI: https://doi.org/10.1533/9780857096265
19. Vaughan, G.D.; Mattox, K.L.; Feliciano, D.V.; Beall, A.C.Jr.; DeBakey, M.E. Surgical Experience with Expanded Polytetrafluoroethylene (PTFE) as a Replacement Graft for Traumatized Vessels. J. Trauma. 1979, 19 (6), 403-408.
DOI: https://doi.org/10.1097/00005373-197906000-00003
20. Homsy, C.A. Soft Porous PTFE-Composite Alloplasts: Tissue-Bonding Characteristics. J. Endocrinol. 2009, 4 (1), 25-32. DOI: https://doi.org/10.1089/end.2000.14.25
DOI: https://doi.org/10.1089/end.2000.14.25
21. Albuquerque, P.C.; Aguiar, J.L.; Santos, S.M.; Pontes Filho, N.; Mello, R.J.; Costa, M.L.; Albuquerque, C.M.; Almeida, T.M.; Santos, A.H.; Silva, J.C. Comparative study of the areas of osteochondral defects produced in the femoral condyles of rabbits treated with gel of sugarcane biopolymer. Acta Cir Bras. 2011, 26 (5): 383-386. DOI: 10.1590/s0102-86502011000500010
DOI: https://doi.org/10.1590/S0102-86502011000500010
22. Reed, A.M.;, Gilding D.K. Biodegradable polymers for use in surgery. Polymer 1981, 22 (4), 494-498. DOI: https://doi.org/10.1016/0032-3861(81)90168-3
DOI: https://doi.org/10.1016/0032-3861(81)90168-3
23. Sekiya, N.; Ichioka, S.; Terada, D.; Tsuchiya, S.; Kobayashi, H. Efficacy of a poly glycolic acid (PGA)/collagen composite nanofibre scaffold on cell migration and neovascularisation in vivo skin defect model. J Plast Surg Hand Surg. 2013, 47 (6): 498-502. DOI: 10.3109/2000656X.2013.788507
DOI: https://doi.org/10.3109/2000656X.2013.788507
24. Reichardt, A.; Arshi, A.; Schuster, P.; Polchow, B.; Shakibaei, M.; Gries, T.; Henrich, W.; Hetzer, R.; Lueders, C. Custom-Made Generation of Three-Dimensional Nonwovens Composed of Polyglycolide or Polylactide for the Cardiovascular Tissue Engineering. J Biomater Tissue Eng. 2012, 2 (4), 322-329. DOI: https://doi.org/10.1166/jbt.2012.1054
DOI: https://doi.org/10.1166/jbt.2012.1054
25. Lee, S.H.; Kim, B.S.; Kim, S.H.; Choi; S.W.; Jeong, S.I.; Kwon, I.K.; Kang, S.W.; Nikolovski, J.; Mooney, D.J.; Han, Y.K.; Kim, Y.H. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A. 2003, 66 (1), 29-37. DOI: 10.1002/jbm.a.10497.
DOI: https://doi.org/10.1002/jbm.a.10497
26. Mercier, N.R.; Costantino, H.R.; Tracy, M.A.; Bonassar, L.J. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials 2005 26 (14), 1945-1952. DOI: https://doi.org/10.1016/j.biomaterials.2004.06.030
DOI: https://doi.org/10.1016/j.biomaterials.2004.06.030
27. Hirano, N.; Kusuhara, H.; Sueyoshi, Y.; Teramura, T.; Murthy, A.; Asamura, S.; Isogai, N.; Jacquet, R.D.; Landis, W.J. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. PLOS One. 2021, 16 (7), Art. No. e0253149. DOI: 10.1371/journal.pone.0253149
DOI: https://doi.org/10.1371/journal.pone.0253149
28. Haisch, A. Ear Reconstruction through Tissue Engineering. In Advances in Oto-Rhino-Laryngology. Aesthetics and Functionality in Ear Reconstruction; Staudenmaier, R., Eds.; Publisher: Basel, Karger, Swizerland. 2010, pp. 108-119.
DOI: https://doi.org/10.1159/000314566
29. Shimada, Y.; Hongo, M.; Miyakoshi, N.; Sugawara, T.; Kasukawa, Y.; Ando, S.; Ishikawa, Y.; Itoi, E. Dural substitute with polyglycolic acid mesh and fibrin glue for dural repair: technical note and preliminary results. J Orthop Sci. 2006, 11, 454–458. DOI: 10.1007/s00776-006-1044-7
DOI: https://doi.org/10.1007/s00776-006-1044-7
30. Iwata, M.; Nakamura, T.; Takeishi, H,; Kasai, H.; Sannomiya, T. Usefulness of new method using absorbable sealing materials and fibrin glue to wound of partial glossectomy. Int J Oral Maxillofac Surg. 2017, 46, 345 – 346.
DOI: https://doi.org/10.1016/j.ijom.2017.02.1165
31. Imran Din, M.; Ahmed, M.; Ahmad, M.; Ghaffar, T.; Hussain, Z.; Khalid, R.; Samad, A. Novel and Facile Synthesis of Biodegradable Plastic Films from Cornmeal by Using the Microwave Polymerization Technique. J Chem. 2022, Art. No. 5697099. DOI: https://doi.org/10.1155/2022/5697099
DOI: https://doi.org/10.1155/2022/5697099
32. Moreno Raja, M.; Lim, P.Q.; Wong, Y.S.; Xiong, G.M.; Zhang, Y.; Venkatraman, S.; Huang, Y. Polymeric Nanomaterials: Methods of Preparation and Characterization. In Micro and Nano Technologies, Nanocarriers for Drug Delivery; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Publisher: Elsevier, 2019; pp. 557-653.
DOI: https://doi.org/10.1016/B978-0-12-814033-8.00018-7
33. Worch, J.C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M.L.; Dove, A.P. Stereochemical enhancement of polymer properties. Nat Rev Chem. 2019, 3 (9), 514-535. DOI: https://doi.org/10.1038/s41570-019-0117-z
DOI: https://doi.org/10.1038/s41570-019-0117-z
34. Reeve, M.S.; McCarthy, S.P.; Downey, M.J.; Gross R.A. Polylactide stereochemistry: effect on enzymic degradability. Macromolecules 1994, 27 (3), 825-831. DOI: 10.1021/ma00081a030
DOI: https://doi.org/10.1021/ma00081a030
35. Xie, Y.; Tan, J.; Fang, S.; Li, T.; Chen, Y.; Li, L.; Chen, N. A biodegradable, osteo-regenerative and biomechanically robust polylactide bone screw for clinical orthopedic surgery. Int Biol Macromol. 2024, 28 (1), Art. No. 137477. https://doi.org/10.1016/j.ijbiomac.2024.137477
DOI: https://doi.org/10.1016/j.ijbiomac.2024.137477
36. Li, X.; Chu, C.; Zhou, L.; Bai, J.; Guo, C.; Xue, F.; Lin, P.; Chu, P.K. Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos Sci Technol. 2017, 142, 180-188. DOI: https://doi.org/10.1016/j.compscitech.2017.02.013
DOI: https://doi.org/10.1016/j.compscitech.2017.02.013
37. Chavalitpanya, K.; Phattanarudee, S. Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Ener Procedia 2013, 34, 542-548. https://doi.org/10.1016/j.egypro.2013.06.783
DOI: https://doi.org/10.1016/j.egypro.2013.06.783
38. Athanasiou, K.A.; Agrawal, C.M.; Barber, F.A.; Burkhart, S.S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 1998, 14 (7), 726-737. DOI: https://doi.org/10.1016/S0749-8063(98)70099-4.
DOI: https://doi.org/10.1016/S0749-8063(98)70099-4
39. Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado M.A.; Kenny, J.M. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 2013, 38 (10–11), 1720-1747. DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.010
DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.010
40. Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 2022, 218, 930-968. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.140
DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.140
41. Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater 2016, 66 (4), 159–182. DOI: https://doi.org/10.1080/00914037.2016.1190930
DOI: https://doi.org/10.1080/00914037.2016.1190930
42. Karimi, A.; Navidbakhsh, M. Mechanical properties of PVA material for tissue engineering applications. MaterTechnol 2013, 29 (2), 90–100. DOI: https://doi.org/10.1179/1753555713Y.0000000115
DOI: https://doi.org/10.1179/1753555713Y.0000000115
43. Manohar, D.; Babu, R.S.; Vijaya, B.; Nallakumar, S.; Gobi, R.; Anand, S.; Nishanth, D.S.; Anupama, A.; Usha Rani, M. A review on exploring the potential of PVA and chitosan in biomedical applications: A focus on tissue engineering, drug delivery and biomedical sensors. Int J Biol Macromol. 2024, 283 (2), Art. No. 137318. DOI: https://doi.org/10.1016/j.ijbiomac.2024.137318
DOI: https://doi.org/10.1016/j.ijbiomac.2024.137318
44. Sinha, A.; Das, G.; Sharma, B.K.; Prabahan Roy, R.; Pramanick, A.K.; Nayar, S. Poly(vinyl alcohol)–hydroxyapatite biomimetic scaffold for tissue regeneration. Mater Sci Eng C. 2007, 27 (1), 70-74. DOI: https://doi.org/10.1016/j.msec.2006.02.008
DOI: https://doi.org/10.1016/j.msec.2006.02.008
45. Dattola, E.; Parrotta, E.I.; Scalise, S.; Perozziello,G.; Limongi, T.; Candeloro, P.; Coluccio, M.L.; Maletta, C.; Bruno, L.; De Angelis, M.T.; Santamaria, G.; Mollace, V.; Lamanna, E.; Di Fabrizio, E.; Cuda, G. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019, 9, 4246-4257. DOI: 10.1039/C8RA08187E
DOI: https://doi.org/10.1039/C8RA08187E
46. Choi, S.M.; Singh, D.; Kumar, A.; Oh, T.H.; Cho, Y.W.; Han, S.S. Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering. Int J Polym Mater Polym Biomater. 2013, 62 (7), 384–389. DOI: https://doi.org/10.1080/00914037.2012.710862
DOI: https://doi.org/10.1080/00914037.2012.710862
47. Zulkifli, F.H.; Hussain, F.S.J.; Rasad, M.S.B.A.; Yusoff, M.M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym Degrad Stab 2014, 110, 473-481. DOI: https://doi.org/10.1016/j.polymdegradstab.2014.10.017
DOI: https://doi.org/10.1016/j.polymdegradstab.2014.10.017
48. Leiggener, C.S.; Curtis, R.; Müller, A.A.; Pfluger, D.; Gogolewski, S.; Rahn, B.A.; Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials 2006, 27 (2), 202-207. DOI: https://doi.org/10.1016/j.biomaterials.2005.05.068
DOI: https://doi.org/10.1016/j.biomaterials.2005.05.068
49. Jung, Y.; Park, M.S.; Lee, J.W.; Kim, Y.H.; Kim, S.; Kim, S.H. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(l-lactide-co-ɛ-caprolactone). Biomaterials 2008, 29 (35), 4630-4636. DOI: https://doi.org/10.1016/j.biomaterials.2008.08.031
DOI: https://doi.org/10.1016/j.biomaterials.2008.08.031
50. Hong, Y.; Gong, Y.; Gao, C.; Shen, J. Collagen‐coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A. 2008, 85 (3), 628-637. DOI: https://doi.org/10.1002/jbm.a.31603
DOI: https://doi.org/10.1002/jbm.a.31603
51. Hanta, A.; Rinaudo, M. Characterization of the alginates from five madagascan brown algae. Carbohydr Polym.`2010, 82 (3), 555-560. DOI: https://doi.org/10.1016/j.carbpol.2010.05.002
DOI: https://doi.org/10.1016/j.carbpol.2010.05.002
52. Horn, S.J.; Moen, E.; Østgaard, K. Direct determination of alginate content in brown algae by near infra-red (NIR) spectroscopy. J Appl Phycol. 1999, 11, 9-13.
DOI: https://doi.org/10.1023/A:1008024009954
53. Draget, K.I.; Steinsvåg, K.; Onsøyen, E.; Smidsrød, O. Na- and K-alginate; effect on Ca2+-gelation. Carbohydr Polym. 1998, 35 (1–2), 1-6. DOI: https://doi.org/10.1016/S0144-8617(97)00237-3
DOI: https://doi.org/10.1016/S0144-8617(97)00237-3
54. Wang, X.; Spencer, H.G. Calcium alginate gels: formation and stability in the presence of an inert electrolyte. Polymer 1998, 39 (13), 2759-2764. DOI: https://doi.org/10.1016/S0032-3861(97)00597-1
DOI: https://doi.org/10.1016/S0032-3861(97)00597-1
55. Ceccaldi, C.; Fullana, S.G.; Alfarano, C.; Lairez, O.; Calise, D.; Cussac, D.; Parini, A.; Sallerin, B. Alginate scaffolds for mesenchymal stem cell cardiac therapy: influence of alginate composition. Cell transplantation 2012, 1 (9), 1969-1984. DOI: https://doi.org/10.3727/096368912X647252
DOI: https://doi.org/10.3727/096368912X647252
56. Qiao, S.P.; Zhao, Y.F.; Li, C.F.; Yin, Y.B.; Meng, Q.Y.; Lin, F.H.; Liu, Y.; Hou, X.; Guo, K.; Che, X.; Tian, W.M. An alginate-based platform for cancer stem cell research. Acta biomater. 2016, 37, 83-92. DOI: https://doi.org/10.1016/j.actbio.2016.04.032
DOI: https://doi.org/10.1016/j.actbio.2016.04.032
57. Garate, A.; Murua, A.; Orive, G.; Hernández, R.M.; Pedraz, J.L. Stem Cells in Alginate Bioscaffolds. Therap Deliv. 2012, 3(6), 761–774. DOI: https://doi.org/10.4155/tde.12.53
DOI: https://doi.org/10.4155/tde.12.53
58. Zhou, H.; Xu, H.H. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 2011, 32 (30), 7503-7513. DOI: https://doi.org/10.1016/j.biomaterials.2011.06.045
DOI: https://doi.org/10.1016/j.biomaterials.2011.06.045
59. Zhang, Z.; Li, Z.; Li, Y.; Wang, Y.; Yao, M.; Zhang, K.; Chen, Z.; Yue, H.; Shi, J.; Guan, F.; Ma, S. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res. 2021, 383, 809-821. DOI: https://doi.org/10.1007/s00441-020-03321-7
DOI: https://doi.org/10.1007/s00441-020-03321-7
60. Zhang, Y.; Chen, H.; Long, X.; Xu, T. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease. Bioactive Mater, 2022, 11, 192-205.
DOI: https://doi.org/10.1016/j.bioactmat.2021.09.023
61. Yilgör, İ.; McGrath, J.E. Polysiloxane containing copolymers: a survey of recent developments. In Polysiloxane copolymers/anionic polymerization; Publisher: Springer Berlin, Heidelberg, Niemcy, 2005; 1-86.
DOI: https://doi.org/10.1007/BFb0025274
62. Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: a review. Polym Int. 2001, 12(5), 1279-1287. DOI: https://doi.org/10.1002/pi.783
DOI: https://doi.org/10.1002/pi.783
63. Dvornic, P.R. Thermal properties of polysiloxanes. In Silicon-containing polymers: the science and technology of their synthesis and applications; Jones, R.G.; Ando, W.; Chojnowski, J., Eds.; Dordrecht: Springer Netherlands, 2000; pp. 185-212.
DOI: https://doi.org/10.1007/978-94-011-3939-7_7
64. Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37 (12), 946-953.
DOI: https://doi.org/10.1021/ar030279z
65. Aydin, C.; Nemli, S.K.; Yilmaz, H. Esthetic, functional, and prosthetic outcomes with implant-retained finger prostheses. Prosthet Orthot Int. 2013, 37 (2), 168-174. DOI: https://doi.org/10.1177/0309364612449850
DOI: https://doi.org/10.1177/0309364612449850
66. Chauhan, M.S.; Saini, S.; Sangur, R. Rehabilitation of amputed finger with silicone finger prosthesis. Guident 2016, 9 (4), 10-13.
67. Misirlioglu, A.; Yavuz, A.; Akoz, T. The Use of Polysiloxane in Total Auricular Reconstruction with Autogenous Rib Cartilage Graftsa. J Int Adv Otol. 2009, 5 (1), 56-61.
68. González Calderón, J.A.; Contreras López, D.; Pérez, E.; Vallejo Montesinos, J. Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym. Bull. 2020, 77, 2749–2817. DOI: https://doi.org/10.1007/s00289-019-02869-x
DOI: https://doi.org/10.1007/s00289-019-02869-x
69. Sherman, M.A. Synthesis and characterization of polyisobutylene/polydimethylsiloxane bicomponent networks. PhD dissertation, The University of Akron, Akron, USA, 1998.
70. Kadziński, L.; Prokopowicz, M.; Jakóbkiewicz-Banecka, J.; Gabig-Cimińska, M.; Łukasiak, J.; Banecki, B. Effect of Silicone on the Collagen Fibrillogenesis and Stability. J Pharm Sci. 2015, 104 (4), 1275-1281. DOI: https://doi.org/10.1002/jps.24351
DOI: https://doi.org/10.1002/jps.24351
71. Akindoyo, J.O.; Beg, M.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications–a review. Rsc Advances 2016, 6 (115), 114453-114482. DOI: https://doi.org/10.1039/C6RA14525F
DOI: https://doi.org/10.1039/C6RA14525F
72. Krol, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52 (6), 915-1015.
DOI: https://doi.org/10.1016/j.pmatsci.2006.11.001
73. Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J.L. Synthesis of polyurethanes using organocatalysis: A perspective. Macromolecules 2015, 48 (10), 3153-3165. DOI: https://doi.org/10.1021/acs.macromol.5b00384
DOI: https://doi.org/10.1021/acs.macromol.5b00384
74. Mathur, A.B.;, Collier, T.O.; Kao, W.J.; Wiggins, M.; Schubert, M.A.; Hiltner, A.; Anderson, J.M. In vivo biocompatibility and biostability of modified polyurethanes. J. Biomed. Mater. Res. 1997, 36 (2), 246-257. DOI: https://doi.org/10.1002/(SICI)1097-4636(199708)36:2%3C246::AID-JBM14%3E3.0.CO;2-E
DOI: https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<246::AID-JBM14>3.3.CO;2-9
75. Laschke, M.W.; Strohe, A.; Scheuer, C.; Eglin, D.; Verrier, S.; Alini, M.; Pohlemann, T.; Menger, M.D. . In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta biomater. 2009, 5 (6), 1991-2001. DOI: https://doi.org/10.1016/j.actbio.2009.02.006
DOI: https://doi.org/10.1016/j.actbio.2009.02.006
76. Ergene, E.; Yagci, B.S.; Gokyer, S.; Eyidogan, A.; Aksoy, E.A.; Huri, P.Y. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering. Biomed. Mater. 2019, 14 (2), Art. No. 025014. DOI: 10.1088/1748-605X/ab007a
DOI: https://doi.org/10.1088/1748-605X/ab007a
77. Gokyer, S.; Yilgor, E.; Yilgor, I.; Berber, E.; Vrana, E.; Orhan, K.; Monsef, Y.A.; Guvener, O.; Zinnuroglu, M.; Oto, C.; Yilgor Huri, P. 3D printed biodegradable polyurethaneurea elastomer recapitulates skeletal muscle structure and function. ACS Appl. Bio Mater. 2021, 7 (11), 5189-5205.
DOI: https://doi.org/10.1021/acsbiomaterials.1c00703
78. Pritchett, J.W. Total Articular Knee Replacement Using Polyurethane. J Knee Surg. 2020, 33 (03), 242-246. DOI: 10.1055/s-0039-1677816
DOI: https://doi.org/10.1055/s-0039-1677816
79. Verdonk, R. Polyurethane Implant (ACTIFIT). In: Meniscal Transplantation; Verdonk, R.; Espregueira Mendes, J.; Monllau, J., Eds.; Springer, Berlin, Heidelberg, Niemcy, 2013, pp. 83-97.
DOI: https://doi.org/10.1007/978-3-642-38106-5_7
80. Ker, D.F.E.; Wang, D.; Behn A.W.; Wang, E.T.H.; Zhang, X.; Zhou, B.Y.; Mercado-Pagán, Á.E.; Kim, S.; Kleimeyer, J.; Gharaibeh, B.; Shanjani, Y.; Nelson, D.; Safran, M.; Cheung, E.; Campbell, P.; Yang, Y.P. Functionally Graded, Bone- and Tendon-Like Polyurethane for Rotator Cuff Repair. Adv Funct Mater. 2018; 28 (20), Art. No. 1707107. DOI: 10.1002/adfm.201707107
DOI: https://doi.org/10.1002/adfm.201707107
81. Jaeblon, T.D.O. Polymethylmethacrylate: Properties and Contemporary Uses in Orthopaedics. JAAOS 2010, 18 (5), 297-305.
DOI: https://doi.org/10.5435/00124635-201005000-00006
82. Radhakumary, C.; Nair, P.D.; Mathew, S.; Nair, C.R. Biopolymer composite of chitosan and methyl methacrylate for medical applications. Trends Biomater. Artif. Organs. 2005, 18 (2), 117-124.
83. Sahoo, P.K.; Samal, R. Fire retardancy and biodegradability of poly(methyl methacrylate) /montmorillonite nanocomposite. Polym. Degrad. Stab. 2007, 92 (9), 1700-1707. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.06.003
DOI: https://doi.org/10.1016/j.polymdegradstab.2007.06.003
84. Zeng, W.R., Li, S.F.; Chow, W.K. Preliminary studies on burning behavior of polymethylmethacrylate (PMMA). J. Fire Sci. 2002, 20 (4), 297-317. DOI: https://doi.org/10.1177/073490402762574749
DOI: https://doi.org/10.1177/073490402762574749
85. Kalachandra, S.; Turner, D.T. Water sorption of polymethacrylate networks: Bis‐GMA/TEGDM copolymers. J Biomed Mater Res. 1987, 21 (3), 329-338. DOI: https://doi.org/10.1002/jbm.820210306
DOI: https://doi.org/10.1002/jbm.820210306
86. Kalachandra, S.; Turner D.T. Water sorption of poly(methyl methacrylate): 3. Effects of plasticizers. Polymer 1987, 28 (10), 1749-1752. DOI: https://doi.org/10.1016/0032-3861(87)90019-X.
DOI: https://doi.org/10.1016/0032-3861(87)90019-X
87. Hughes, L.J.; Britt, G.E. Compatibility studies on polyacrylate and polymethacrylate systems. J Appl Polym Sci. 1961, 5 (15), 337-348. DOI: https://doi.org/10.1002/app.1961.070051514
DOI: https://doi.org/10.1002/app.1961.070051514
88. Zheng, Z.; Chen, S.; Liu, X.; Wang, Y.; Bian, Y.; Feng, B.; Zhao, R.; Qiu, Z.; Sun, Y.; Zhang, H.; Cui, F.; Yang, X.; Weng, X. A bioactive polymethylmethacrylate bone cement for prosthesis fixation in osteoporotic hip replacement surgery. Mater 2021, 209, Art. No. 109966. DOI: https://doi.org/10.1016/j.matdes.2021.109966
DOI: https://doi.org/10.1016/j.matdes.2021.109966
89. Weinrauch P.C.; Bell, C.; Wilson, L.; Goss, B.; Lutton, C.; Crawford, R.W. Shear Properties of Bilaminar Polymethylmethacrylate Cement Mantles in Revision Hip Joint Arthroplasty. J. Arthroplasty 2007, 22 (3), 394-403. DOI: https://doi.org/10.1016/j.arth.2006.04.010.
DOI: https://doi.org/10.1016/j.arth.2006.04.010
90. Convery, F.R,; Gunn, D.R.; Hughes, J.D.; Martin, W.E. The relative safety of polymethylmethacrylate. A controlled clinical study of randomly selected patients treated with Charnley and ring total hip replacements. J Bone Joint Surg Am. 1975, 57 (1), 57-64.
DOI: https://doi.org/10.2106/00004623-197557010-00010
91. Vandencasteele, N.; Nisol, B.; Viville, P.; Lazzaroni, R.; Castner, D.G.; Reniers, F. Plasma‐modified PTFE for biological applications: correlation between protein‐resistant properties and surface characteristics. Plasma Process Polym. 2008, 5 (7), 661-671.
DOI: https://doi.org/10.1002/ppap.200700143
92. Okahara, K.; Kambayashi, J.; Shibuya, T.; Kawasaki, T.; Sakon, M.; Dohi, Y.; Oka, Y.; Ito, S.; Miyake, S. An infection-resistant PTFE vascular graft; spiral coiling of the graft with ofloxacin-bonded PTFE thread. Eur J Vasc Endovasc Surg. 1995, 9 (4), 408-414. DOI: https://doi.org/10.1016/S1078-5884(05)80008-5
DOI: https://doi.org/10.1016/S1078-5884(05)80008-5
93. Nistal, F.; García-Martínez, V.; Arbe, E.; Fernàndez, D.; Artiñano, E.; Mazorra, F.; Gallo, I. In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 1990, 99 (6), 1074-1081. DOI: https://doi.org/10.1016/S0022-5223(20)31464-1
DOI: https://doi.org/10.1016/S0022-5223(20)31464-1
94. Bezuidenhout, D.; Williams, D.F.; Zilla, P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 2015, 36, 6-25. DOI: https://doi.org/10.1016/j.biomaterials.2014.09.013
DOI: https://doi.org/10.1016/j.biomaterials.2014.09.013
95. Roll, S.; Müller-Nordhorn, J.; Keil, T.; Scholz, H.; Eidt, D.; Greiner, W.; Willich, S.N. Dacron® vs. PTFE as bypass materials in peripheral vascular surgery–systematic review and meta-analysis. BMC Surgery 2008, 8, 1-8. DOI: https://doi.org/10.1186/1471-2482-8-22
DOI: https://doi.org/10.1186/1471-2482-8-22
96. Albers, M.; Battistella, V.M.; Romiti, M.; Rodrigues, A.A.E.; Pereira, C.A.B. Meta-analysis of polytetrafluoroethylene bypass grafts to infrapopliteal arteries. J. Vasc. Surg. 2003, 37 (6), 1263-1269. DOI: https://doi.org/10.1016/S0741-5214(02)75332-9
DOI: https://doi.org/10.1016/S0741-5214(02)75332-9
97. Viterbo, F.; Batalha, P.K.M.; Bacchi, C.E. Thread Seal Tape” (Polytetrafluoroethylene) Implanted in the Subcutaneous Tissue of Rats. Aesthetic Plast Surg. 2006, 30, 77-80. DOI: https://doi.org/10.1007/s00266-004-0092-7
DOI: https://doi.org/10.1007/s00266-004-0092-7
98. Datta, P.; Mohi, G.K., Chander, J. High Quanlity PTFE Thread Seal Tape. J Lab Physicians. 2018, 10 (1), 6-14.
DOI: https://doi.org/10.4103/JLP.JLP_89_17
99. Rittgers, S.E.; Garcia-Valdez, C.; McGuigan, J.A. Non-invasive measurement of blood flow-rate in expanded polytetrafluoroethylene grafts. J Med Eng Technol. 1985, 9 (1), 1-4. DOI: https://doi.org/10.3109/03091908509018197
DOI: https://doi.org/10.3109/03091908509018197
100. Yeh, Y.S.; Iriyama, Y.; Matsuzawa, Y.; Hanson, S.R.; Yasuda, H. Blood compatibility of surfaces modified by plasma polymerization. J. Biomed. Mater. Res. 1988, 22 (9), 795-818.
DOI: https://doi.org/10.1002/jbm.820220904
101. Glycolic Acid: What It's Used For, How to Use & Side Effects. Available online: https://www.tuasaude.com/en/glycolic-acid/ (accessed on 03.02.2025).
102. Misra, V.; Shrivastava, A.K.; Shukla, S.P.; Solomon, S.; Ansari, M.I. Sugarcane: A boon for enhancing women's beauty. Agrica 2016, 5 (1), 1-6. DOI: 10.5958/2394-448X.2016.00001.8
DOI: https://doi.org/10.5958/2394-448X.2016.00001.8
103. Gilding, D.K.; Reed, A.M. Biodegradable polymers for use in surgery—polyglycolic/poly (actic acid) homo-and copolymers: 1. Polymer 1979, 20 (12), 1459-1464. DOI: https://doi.org/10.1016/0032-3861(79)90009-0
DOI: https://doi.org/10.1016/0032-3861(79)90009-0
104. Pappalardo, D.; Mathisen, T.; Finne-Wistrand, A. Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules 2019, 20 (4), 1465-1477. DOI: https://doi.org/10.1021/acs.biomac.9b00159
DOI: https://doi.org/10.1021/acs.biomac.9b00159
105. Marmon, L.M.; Vinocur, C.D.; Standiford, S.B.; Wagner, C.W.; Dunn, J.M.; Weintraub, W.H. Evaluation of absorbable polyglycolic acid mesh as a wound support. J. Pediatr. Surg. 1985, 20 (6), 737-742. DOI: https://doi.org/10.1016/S0022-3468(85)80036-1
DOI: https://doi.org/10.1016/S0022-3468(85)80036-1
106. Pavan, A.; Bosio, M.; Longo, T. A comparative study of poly (glycolic acid) and catgut as suture materials. Histomorphology and mechanical properties. J Biomed Mater Res A. 1979, 13 (3), 477-496. DOI: https://doi.org/10.1002/jbm.820130312
DOI: https://doi.org/10.1002/jbm.820130312
107. Ozawa, T.; Mickle, D.A.; Weisel, R.D.; Koyama, N.; Ozawa, S.; Li, R.K. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002, 106 (12_suppl_1), I-176. DOI: https://doi.org/10.1161/01.cir.0000032901.55215.cc
DOI: https://doi.org/10.1161/01.cir.0000032901.55215.cc
108. Liu, L.; Tang, Y.; Li, Y.; Zhang, Y. Study on the application of degradable occluder in the interventional treatment of congenital heart disease. MEDS Clinical Medicine 2024, 5 (1), 14-19. DOI: 10.23977/medsc.2024.050103
DOI: https://doi.org/10.23977/medsc.2024.050103
109. Jiao, H.; Yao, J.; Yang, Y.; Chen, X.; Lin, W.; Li, Y.; Gu, X.; Wang, X. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 2009, 30 (28), 5004-5018.
DOI: https://doi.org/10.1016/j.biomaterials.2009.05.059
110. Nakamura, T.; Inada, Y.; Fukuda, S.; Yoshitani, M.; Nakada, A.; Itoi, S.I.; Kanemaru, S.; Endo, K.; Shimizu, Y. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid–collagen (PGA–collagen) tube. Brain Res. 2004, 1027 (1-2), 18-29. DOI: https://doi.org/10.1016/j.brainres.2004.08.040
DOI: https://doi.org/10.1016/j.brainres.2004.08.040
111. Razzak, M.T.; Dewi, S.P.; Lely, H.; Taty, E.The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat. Phys. Chem. 1999, 55 (2), 153-165. DOI: https://doi.org/10.1016/S0969-806X(98)00320-X
DOI: https://doi.org/10.1016/S0969-806X(98)00320-X
112. Pant, J.; Pedaparthi, S.; Hopkins, S.P.; Goudie, M.J.; Douglass, M.E.; Handa, H. Antibacterial and cellular response toward a gasotransmitter-based hybrid wound dressing. ACS Appl. Bio Mater. 2019, 5 (8), 4002-4012. DOI: https://doi.org/10.1021/acsbiomaterials.9b00737
DOI: https://doi.org/10.1021/acsbiomaterials.9b00737
113. Wang, W.; Yu, Q.; Shao, Z.; Guo, Y.; Wang, Y.; Yang, Y.; Zhao, W.; Zhao, C. Exudate‐Induced Gelatinizable Nanofiber Membrane with High Exudate Absorption and Super Bactericidal Capacity for Bacteria‐Infected Wound Management. Adv. Healthc. Mater 2024, 13 (9), Art. No. 2303293. DOI: https://doi.org/10.1002/adhm.202303293
DOI: https://doi.org/10.1002/adhm.202303293
114. Kaya, S.; Derman, S. Properties of ideal wound dressing. J. Fac. Pharm. Ankara 2023, 47 (3), 1119-1131. DOI: https://doi.org/10.33483/jfpau.1253376
DOI: https://doi.org/10.33483/jfpau.1253376
115. Kamoun, E.A.; Kenawy, E.R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8 (3), 217-233. DOI: https://doi.org/10.1016/j.jare.2017.01.005
DOI: https://doi.org/10.1016/j.jare.2017.01.005
116. Asiri, A.; Saidin, S.; Sani, M.H.; Al-Ashwal, R.H. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci. Rep. 2021, 11 (1), Art. No. 5634. https://doi.org/10.1038/s41598-021-85149-x
DOI: https://doi.org/10.1038/s41598-021-85149-x
117. Gao, T.; Jiang, M.; Liu, X.; You, G.; Wang, W.; Sun, Z.; Ma, A.; Chen, J. Patterned polyvinyl alcohol hydrogel dressings with stem cells seeded for wound healing. Polymers 2019, 11 (1), Art. No. 171. DOI: https://doi.org/10.3390/polym11010171
DOI: https://doi.org/10.3390/polym11010171
118. Dorkhani, E.; Faryabi, A.; Noorafkan, Y.; Heirani, A.; Behboudi, B.; Fazeli, M.S.; Kazemeini, A.; Keramati, M.R.; Keshvari, A.; Tafti, S.M.A. Biomedical properties and hemostatic efficacy of polyvinyl alcohol (PVA) based hydrogel in experimental rat liver injury model. J. Appl. Biomater. Funct. Mater 2023, 21, 22808000231198803. DOI: https://doi.org/10.1177/22808000231198803
DOI: https://doi.org/10.1177/22808000231198803
119. Güiza-Argüello, V.R.; Solarte-David, V.A.; Pinzón-Mora, A.V.; Ávila-Quiroga, J.E.; Becerra-Bayona, S.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment. Polymers 2022, 14 (14), Art. No. 2764. DOI: https://doi.org/10.3390/polym14142764
DOI: https://doi.org/10.3390/polym14142764
120. Yao, Y.; Zhang, A.; Yuan, C.; Chen, X.; Liu, Y. Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomatet Sci. 2021, 9 (13), 4523-4540. DOI: https://doi.org/10.1039/D1BM00411E
DOI: https://doi.org/10.1039/D1BM00411E
121. Aderibigbe, B.A.; Buyana, B. Alginate in wound dressings. Pharmaceutics 2018, 10 (2), Art. No. 42. DOI: https://doi.org/10.3390/pharmaceutics10020042
DOI: https://doi.org/10.3390/pharmaceutics10020042
122. Barros, N.R.; Ahadian, S.; Tebon, P.; Rudge, M.V.C.l Barbosa, A.M.P.; Herculano, R.D. Highly absorptive dressing composed of natural latex loaded with alginate for exudate control and healing of diabetic wounds. Mater. Sci. Eng. C. 2021, 119, Art. No. 111589. https://doi.org/10.1016/j.msec.2020.111589
DOI: https://doi.org/10.1016/j.msec.2020.111589
123. Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol 2020, 162, 1414-1428. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.311
DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.311
124. Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current trends in advanced alginate-based wound dressings for chronic wounds. J. Pers. Med. 2021, 11 (9), Art. No. 890. DOI: https://doi.org/10.3390/jpm11090890
DOI: https://doi.org/10.3390/jpm11090890
125. Wiśniewska-Wrona, M.; El Fray, M. Functional three-component polymeric biocomposites for the treatment of bedsores. Prog Chem Appl Chitin Deriv. 2018, 23, 185-206. DOI: 10.15259.PCACD.23.19
DOI: https://doi.org/10.15259/PCACD.23.019
126. Hassanzadeh-Tabrizi, S.A. Alginate based hemostatic materials for bleeding management: A review. Int. J. Biol. Macromol. 2024, 274 (1), Art. No. 133218. DOI: https://doi.org/10.1016/j.ijbiomac.2024.133218
DOI: https://doi.org/10.1016/j.ijbiomac.2024.133218
127. Qin, Y. The gel swelling properties of alginate fibers and their applications in wound management. Polym Adv Technol. 2008, 19 (1), 6-14. DOI: https://doi.org/10.1002/pat.960
DOI: https://doi.org/10.1002/pat.960
128. Hampton, S. The role of alginate dressings in wound healing. Diabet Foot 2004, 7 (4), 162-167.
129. Balakrishnan, B.; Mohanty, M.; Umashankar, P.R.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26 (32), 6335-6342. DOI: https://doi.org/10.1016/j.ijpharm.2008.03.021
DOI: https://doi.org/10.1016/j.biomaterials.2005.04.012
130. Kim, J.O.; Park, J.K.; Kim, J.H.; Jin, S.G.; Yong, C.S.; Li, D.X.; Coi, J.Y.; Woo, S.J.; Yoo, B.K.; Lyoo, W.S.; Kim. J.A.; Choi, H. G. Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int. J. Pharm. 2008, 359 (1-2), 79-86. DOI: https://doi.org/10.1016/j.ijpharm.2008.03.021
DOI: https://doi.org/10.1016/j.ijpharm.2008.03.021
131. Park, S.; Mondal, K.; Treadway III, R.M.; Kumar, V.; Ma, S.; Holbery, J.D.; Dickey, M.D. Silicones for stretchable and durable soft devices: Beyond Sylgard-184. ACS Appl. Mater. Interfaces 2018, 10 (13), 11261-11268. DOI: https://doi.org/10.1021/acsami.7b18394
DOI: https://doi.org/10.1021/acsami.7b18394
132. Stern, S.A.; Shah, V.M.; & Hardy, B.J. Structure‐permeability relationships in silicone polymers. J Polym Sci B Polym Phys. 1987, 25 (6), 1263-1298. DOI: https://doi.org/10.1002/polb.1987.090250607
DOI: https://doi.org/10.1002/polb.1987.090250607
133. Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater. 2021, 121, 68-88. DOI: https://doi.org/10.1016/j.actbio.2020.11.020
DOI: https://doi.org/10.1016/j.actbio.2020.11.020
134. Busch, H. Silicone toxicology. Semin. Arthritis Rheum. 1994, 24 (1), 1-17. DOI: https://doi.org/10.1016/0049-0172(94)90104-X.
DOI: https://doi.org/10.1016/0049-0172(94)90104-X
135. Rogers, W.J. Sterilisation techniques for polymers. In Sterilisation of Biomaterials and Medical Devices; Lerouge, S., Simmons, A., Eds.; Woodhead Publishing, 2012, pp. 151-211.
DOI: https://doi.org/10.1533/9780857096265.151
136. Garrido, L.; Bogdanova, A.; Cheng, L.L.; Pfleiderer, B.; Tokareva, E.; Ackerman, J.L.; Brady, T.J. Detection of silicone migration and biodegradation with NMR. In Immunology of Silicones. Current Topics in Microbiology and Immunology; Potter, M., Rose, N.R., Eds.; Springer, Berlin, Heidelberg.1996, pp. 49-58.
DOI: https://doi.org/10.1007/978-3-642-85226-8_5
137. Stavrou, D.; Weissman, O.; Winkler, E.; Yankelson, L.; Millet, E.; Mushin, O.P.; Liran, A.; Haik, J. Silicone-based scar therapy: a review of the literature. Aesthetic Plast. Surg. 2010, 34, 646-651. DOI: https://doi.org/10.1007/s00266-010-9496-8
DOI: https://doi.org/10.1007/s00266-010-9496-8
138. Clugston, P.A.; Vistnes, M.D.; Perry, L.C.; Maxwell, G.P., Fisher, J. Evaluation of silicone-gel sheeting on early wound healing of linear incisions. Ann Past Surg. 1995, 34 (1), 12-15.
DOI: https://doi.org/10.1097/00000637-199501000-00003
139. Poojari, Y. Silicones for encapsulation of medical device implants. Silicon 2017, 9 (5), 645-649. DOI: https://doi.org/10.1007/s12633-017-9603-4
DOI: https://doi.org/10.1007/s12633-017-9603-4
140. Gasab, M.T.I.;Uchiyama, M.; Nakatani, T.; Valanezhad, A.; Watanabe, I.; Fujiyama, H. Advanced DLC coating technique on silicone-based tubular medical devices. SCT, 2016, 307, 1084-1087.
DOI: https://doi.org/10.1016/j.surfcoat.2016.06.067
141. Shakiba, M.; Rezvani Ghomi, E.; Khosravi, F.; Jouybar, S.; Bigham, A.; Zare, M.; Abdouss, M.; Moaref, R.; Ramakrishna, S. Nylon—A material introduction and overview for biomedical applications. Polym Adv Technol. 2021, 32(9), 3368-3383. https://doi.org/10.1002/pat.5372
DOI: https://doi.org/10.1002/pat.5372
142. Alves de Oliveira, M.; Arcanjo, A.; Castro, F.; Fernandes, J.C.H.; Fernandes, G.V.O. Evaluating and Comparing the Tensile Strength and Clinical Behavior of Monofilament Polyamide and Multifilament Silk Sutures: A Systematic Review. Surgeries 2024, 5(2), 350-366. https://doi.org/10.3390/surgeries5020029
DOI: https://doi.org/10.3390/surgeries5020029
143. Mouseli, S.; Natouri, O.; Seghinsara, A.M.; Ghorbani, M.; Mokhtarzadeh, A.A.; Moghadam, F.M. Physicochemical and biological characterization of propolis-loaded composite polyamide-6/soybean protein nanofibers for wound healing applications. Colloids Surf. A: Physicochem. Eng. Asp 2024, 694, 134172. https://doi.org/10.1016/j.colsurfa.2024.134172
DOI: https://doi.org/10.1016/j.colsurfa.2024.134172
144. Bazbouz, M.B.; Stylios, G.K. The tensile properties of electrospun nylon 6 single nanofibers. J Polym Sci B Polym Phys. 2010, 48 (15), 1719-1731. DOI: https://doi.org/10.1002/polb.21993
DOI: https://doi.org/10.1002/polb.21993
145. Chu, C; Matylevitch, N.P.; McManus, A.T.; Goodwin, C.W.; Pruitt, B.A. Jr. Accelerated Healing with a Mesh Autograft/Allodermal Composite Skin Graft Treated with Silver Nylon Dressings with and without Direct Current in Rats. J. trauma 2000, 49 (1), 115-125.
DOI: https://doi.org/10.1097/00005373-200007000-00018
146. Adams, A.P. ;Santschi, E.M.; Mellencamp, M.A. Antibacterial properties of a silver chloride‐coated nylon wound dressing. Vet Surg. 1999, 28 (4), 219-225. DOI: https://doi.org/10.1053/jvet.1999.0219
DOI: https://doi.org/10.1053/jvet.1999.0219
147. Dharmavarapu, P.; MBS, S.R. Aramid fibre as potential reinforcement for polymer matrix composites: a review. Emergent materials 2022, 5 (5), 1561-1578. DOI: https://doi.org/10.1007/s42247-021-00246-x
DOI: https://doi.org/10.1007/s42247-021-00246-x
148. Mahltig, B. Fibers for radiation protection. In Handbook of Fibrous Materials; Hu, J.; Kumar, B.; Lu, J., Eds.; Publisher: Wiley‐VCH Verlag GmbH & Co. KgaA, Niemcy, 2020, pp. 889-926.
DOI: https://doi.org/10.1002/9783527342587.ch32
149. Kowsari, E.; Haddadi-Asl, V.; Ajdari, F.B.; Hemmat, J. Aramid fibers composites to innovative sustainable materials for biomedical applications. In Materials for Biomedical Engineering; Holban, A-M.; Grumezescu, A.M., Eds.; Elsevier, 2019; pp. 173-204.
DOI: https://doi.org/10.1016/B978-0-12-816872-1.00006-6
150. Shrivastava, A., Chakraborty, M., & Singh, A. K.Biocomposites with polyamide fibers (nylons and aramids). In Advances in Biocomposites and their Applications; Karak, N., Ed.; Woodhead Publishing. Elsevier, 2024, pp. 121-147.
DOI: https://doi.org/10.1016/B978-0-443-19074-2.00004-6
151. Chaiken S. Physical Appearance and Social Influence. In Physical Appearance, Stigma, and Social Behavior; Herman, C.P.; Zanna, M.P.; Higgins, E.T., Eds.; Taylor & Francis Group, London; UK; 1986, chapter 7.
152. Sobanko, J.F.; Sarwer, D.B.; Zvargulis, Z.; Miller, Christopher J. Importance of Physical Appearance in Patients With Skin Cancer. Dermatol Surg. 2015, 41 (2), 183-188. DOI: 10.1097/DSS.000000000000025
DOI: https://doi.org/10.1097/DSS.0000000000000253
153. Barnes, B.; Yamamoto, M. Exploring international cosmetics advertising in Japan. J. Mark. Manage. 2008, 24 (3-4), 299-316. DOI: https://doi.org/10.1362/026725708X306112.
DOI: https://doi.org/10.1362/026725708X306112
154. Płatek, K. Znaczenie reklamy telewizyjnej w nabywaniu dóbr przez kobiety na rynku kosmetycznym w Polsce, Uniwerystte Jagielloński w Krakowie, Karaków, 2020.
155. Rancan, F.; Blume-Peytavi, U.; Vogt, A. Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin Cosmet Investig Dermatol. 2014, 7, 23-34.
DOI: https://doi.org/10.2147/CCID.S39559
156. Zhang, Z.; Tsai, P.C., Ramezanli, T.; Michniak‐Kohn, B.B. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5 (3), 205-218.
DOI: https://doi.org/10.1002/wnan.1211
157. Maksymiak, M.; Debowska, R.; Bazela, K.; Dzw igalowska, A.; Orchel, A.; Jelonek, K.; Dolegowska, B.; Kowalczuk, M.; Adamus, G. Designing of biodegradable and biocompatible release and delivery systems of selected antioxidants used in cosmetology. Biomacromolecules 2015,16 (11), 3603-3612. DOI: https://doi.org/10.1021/acs.biomac.5b01065
DOI: https://doi.org/10.1021/acs.biomac.5b01065
158. Zhao, P.; Zhao, W.; Zhang, K.; Lin, H.; Zhang, X. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J. Appl. Polym. Sci. 2020, 137 (25), Art. No. 48515. DOI: https://doi.org/10.1002/app.48515
DOI: https://doi.org/10.1002/app.48515
159. Peng, W.; Peng, Z.; Tang, P.; Sun, H.; Lei, H.; Li, Z.; Hui, D.; Du, C.; Zhoi, C.; Wang, Y. Review of plastic surgery biomaterials and current progress in their 3D manufacturing technology. Materials 2020, 13 (18), Art. No. 4108. DOI: https://doi.org/10.3390/ma13184108
DOI: https://doi.org/10.3390/ma13184108
160. Bressan, E.; Favero, V.; Gardin, C.; Ferroni, L.; Iacobellis, L.; Favero, L.; Vindigni, V.; Berengo, M.;, Sivolella, S.; Zavan, B. Biopolymers for hard and soft engineered tissues: application in odontoiatric and plastic surgery field. Polymers 2011, 3 (1), 509-526.
DOI: https://doi.org/10.3390/polym3010509
161. Swanson, A.B.; Meester, W.D.; Swanson, G. deGroot; Rangaswamy, L.; Schut, G.E.D. Durability of Silicone Implants —An In Vivo Study. Orthop Clin North Am. 1973, 4 (4), 1097–1112. DOI: https://doi.org/10.1016/S0030-5898(20)30840-3
DOI: https://doi.org/10.1016/S0030-5898(20)30840-3
162. Hauser, J.; Esenwein, S.-A.; Awakowicz, P.; Steinau, H.-U.; Köller, M.; Halfmann, H. Sterilization of Heat-Sensitive Silicone Implant Material by Low-Pressure Gas Plasma. Biomed Instrum Technol. 2011, 45 (1), 75–79. DOI: https://doi.org/10.2345/0899-8205-45.1.75
DOI: https://doi.org/10.2345/0899-8205-45.1.75
163. Donaldson, P.E.K. Hydrothermal stability of joints, using a silicone rubber adhesive, for a range of adherends of interest to makers of surgically-implanted microelectronic devices. Int J Adhes Adhes. 1994, 14 (2), 103-107. DOI: https://doi.org/10.1016/0143-7496(94)90004-3
DOI: https://doi.org/10.1016/0143-7496(94)90004-3
164. Heggers, J.P.; Kossovsky, N.; Parsons, R.W.; Robson, M.C.; Pelley, R.P.; Raine, T.J. Biocompatibility of silicone implants. Ann. Plast. Surg. 1983, 11 (1), 38-45.
DOI: https://doi.org/10.1097/00000637-198307000-00006
165. Ahmad, M.; Pelorson, X.; Guasch, O.; Fernández, A.I.; Van Hirtum, A. Modelling and validation of the non-linear elastic stress–strain behaviour of multi-layer silicone composites. J. Mech. Behav. Biomed. Mater. 2023,139, Art. No. 105690. DOI: https://doi.org/10.1016/j.jmbbm.2023.105690
DOI: https://doi.org/10.1016/j.jmbbm.2023.105690
166. Sugimoto, H.; Nishino, G.; Tsuzuki, N.; Daimatsu, K.; Inomata, K.; & Nakanishi, E. Preparation of high oxygen permeable transparent hybrid copolymers with silicone macro-monomers. Colloid Polym Sci. 2012, 290, 173-181.
DOI: https://doi.org/10.1007/s00396-011-2538-1
167. Bridges, A.J. Silicone Breast Implants: History, Safety, and Potential Complications. Arch Intern Med 1993, 153 (23), Art. No. 2638. DOI: https://doi.org/10.1001/archinte.1993.00410230048007
DOI: https://doi.org/10.1001/archinte.1993.00410230048007
168. Sánchez-Guerrero, J.; Colditz, G.A.; Karlson, E.W.; Hunter, D.J.; Speizer, F.E.; Liang, M.H. Silicone Breast Implants and the Risk of Connective-Tissue Diseases and Symptoms. N Engl J Med 1995, 332 (25), 1666–1670. DOI: 10.1056/NEJM199506223322502
DOI: https://doi.org/10.1056/NEJM199506223322502
169. Hillard, C.; Fowler, J.D.; Barta, R.; Cunningham, B. Silicone Breast Implant Rupture: A Review. Gland Surg. 2017, 6 (2), 163–168. DOI: https://doi.org/10.21037/gs.2016.09.12
DOI: https://doi.org/10.21037/gs.2016.09.12
170. De Boer, M.; Colaris, M.; Van Der Hulst, R.R.W.J.; Cohen Tervaert, J. W. Is Explantation of Silicone Breast Implants Useful in Patients with Complaints? Immunol Res. 2017, 65 (1), 25–36. DOI: https://doi.org/10.1007/s12026-016-8813-y
DOI: https://doi.org/10.1007/s12026-016-8813-y
171. Hawe, M. Acrylic Polymers as Rheology Modifiers for Water-based Systems. In Handbook of Industrial Water Soluble Polymers; Williams P.A., Ed.; Publisher: Blackwell Publishing Ltd, 2007, USA; pp. 32-72.
DOI: https://doi.org/10.1002/9780470988701.ch3
172. Lochhead, R.Y. The role of polymers in cosmetics: recent trends. In ACS Symposium Series; Morgan S.E.; Havelka, K.O.; Lochhead R.Y., Eds; Publisher: American Chemical Society, 2007, 961-1015.
DOI: https://doi.org/10.1021/bk-2007-0961.ch001
173. Babaluei, M.; Mottaghitalab, F.; Seifalian, A.; Farokhi, M. Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int. J. Biol. Macromol. 2023, 236, Art. No. 124005. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124005
DOI: https://doi.org/10.1016/j.ijbiomac.2023.124005
174. von Buelow, S.; Pallua, N. Efficacy and Safety of Polyacrylamide Hydrogel for Facial Soft-Tissue Augmentation in a 2-Year Follow-Up: A Prospective Multicenter Study for Evaluation of Safety and Aesthetic Results in 101 Patients. Plast Reconstr Surg. 2006, 118 (3S), 85S-91S. DOI: 10.1097/01.prs.0000234844.59251.3f
DOI: https://doi.org/10.1097/01.prs.0000234844.59251.3f
175. Christensen, L.H.; Breiting, V.B..; Aasted, A.; Jørgensen, A.; Kebuladze, Ivan. Long-Term Effects of Polyacrylamide Hydrogel on Human Breast Tissue. Plast. Reconstr. Surg. 2003, 111 (6), 1883-1890. DOI: 10.1097/01.PRS.0000056873.87165.5A
DOI: https://doi.org/10.1097/01.PRS.0000056873.87165.5A
176. Purnell, C.A.; Klosowiak, J.L.; Cheesborough, J.E.; Park, E.; Bandy, A; Dumanian, G.A. Resolution of Cosmetic Buttock Injection-induced Inflammatory Reaction and Heart Failure after Excision of Filler Material. Plast. Reconstr. Surg. - Glob. Open 2016, 4 (10), Art. No. E1079. DOI: 10.1097/GOX.0000000000001079
DOI: https://doi.org/10.1097/GOX.0000000000001079
177. Yang, Y; Li, S; He, J; Zhao, X; Chen, W; Dai, X; Liu, L. Clinicopathological Analysis of 90 Cases of Polyacrylamide Hydrogel Injection for Breast Augmentation Including 2 Cases Followed by Breast Cancer. Breast Care (Basel) 2020; 15 (1): 38-43. DOI: 10.1159/000499832
DOI: https://doi.org/10.1159/000499832
178. Von Buelow, S.; von Heimburg, D.; Pallua, N. Efficacy and safety of polyacrylamide hydrogel for facial soft-tissue augmentation. Plast reconstr surg. 2005, 116 (4), 1137-1146.
DOI: https://doi.org/10.1097/01.prs.0000179349.14392.a4
179. Manafi, A.; Emami, A.H.; Pooli, A.H.; Habibi, M.; Saidian, L. Unacceptable results with an accepted soft tissue filler: polyacrylamide hydrogel. Aesthetic Plast. Surg. 2010, 34, 413-422. DOI: https://doi.org/10.1007/s00266-009-9359-3
DOI: https://doi.org/10.1007/s00266-009-9359-3
180. Atiyeh, B.; Ghieh, F.; Oneisi, A. Safety and efficiency of minimally invasive buttock augmentation: a review. Aesthetic Plast. Surg. 2023, 47 (1), 245-259.
DOI: https://doi.org/10.1007/s00266-022-03049-5
181. Bugmann, P.H.; Taylor, S.; Gyger, D.; Lironi, A.; Genin, B.; Vunda, A.; La Scala, G.; Birraux, J.; Le Coultre, C. A silicone-coated nylon dressing reduces healing time in burned paediatric patients in comparison with standard sulfadiazine treatment: a prospective randomized trial. Burns 1998, 24 (7), 609-612. DOI: https://doi.org/10.1016/S0305-4179(98)00095-3
DOI: https://doi.org/10.1016/S0305-4179(98)00095-3
182. Nathan, P.; Robb, E.C.; Dressler, D.; MacMillan, B.G. A silicone-nylon laminated dressing (IP-758) for closure of excised or débrided burn wounds. Burns 1982, 8(5), 328-332. DOI: https://doi.org/10.1016/0305-4179(82)90032-8
DOI: https://doi.org/10.1016/0305-4179(82)90032-8
183. Bernstein, R.M.; Rassman, W.R.; Rashid, N. A new suture for hair transplantation: poliglecaprone 25. Dermatol surg. 2001, 27 (1), 5-11.
DOI: https://doi.org/10.1111/j.1524-4725.2001.00217.x
184. Lackey, J.; Mendese, G.; Grande, D. . Using an absorbable purse-string suture to reduce surgical defects of the nose before placement of full-thickness skin grafts. Dermatol Surg 2015, 41 (5), 657-660. DOI: 10.1097/DSS.0000000000000358
DOI: https://doi.org/10.1097/DSS.0000000000000358
185. Mahajan, R.; Mosley, J.G. Use of a semipermeable polyamide dressing over skin grafts to venous leg ulcers. Br J Surg. 1995, 82 (10), 1359-1360. DOI: https://doi.org/10.1002/bjs.1800821020
DOI: https://doi.org/10.1002/bjs.1800821020
186. Gumargalieva, K.; Zaikov, G. Burn dressings sorption and desorption kinetics and mechanism. In Key Engineering Materials, 1 ed., Kajzar, F; Pearce, E.M.; Turovskij, N.A.; Mukbaniani O.V., Eds.; Publisher: Apple Academic Press, New York , USA, 2014; Volume 2, Chapter 14.
187. Adamietz, I.A.; Mose, S.; Haberl, A.; Saran, F.H.; Thilmann, C.; Böttcher, H.D. Effect of self‐adhesive, silicone‐coated polyamide net dressing on irradiated human skin. Radiat. Oncol. Investig. 1994, 2 (6), 277-282. DOI: https://doi.org/10.1002/roi.2970020605
DOI: https://doi.org/10.1002/roi.2970020605
188. Barillo, D.J.; Pozza, M.; Margaret-Brandt, M. A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns 2014, 40, S24-S29. DOI: https://doi.org/10.1016/j.burns.2014.09.017
DOI: https://doi.org/10.1016/j.burns.2014.09.017
189. CHU, C; McMANUS, A.T.; PRUITT, B.A. Jr; MASON, A.D. Jr. Therapeutic Effects of Silver Nylon Dressings with Weak Direct Current on Pseudomonas aeruginosa-lnfected Burn Wounds. J. Trauma 1988, 28 (10), 1488-1492.
DOI: https://doi.org/10.1097/00005373-198810000-00016
190. Aurora, A.; Beasy, A.; Rizzo, J.A.; Chung, KK. The use of a silver–nylon dressing during evacuation of military burn casualties. J Burn Care Res. 2018, 39 (4), 593-597. DOI: https://doi.org/10.1093/jbcr/irx026
DOI: https://doi.org/10.1093/jbcr/irx026