1. Krishnan, S. G.; Vinod, K. K.; Bhowmick, P. K.; Bollinedi, H.; Ellur, R. K.; Seth, R.; Singh, A. K. Rice Breeding, In Fundamentals of Field Crop Breeding; Springer Nature Singapore: Singapore, 2022; pp 113–220. DOI: 1 0.1007/978-981-16-9257-4_3.
2. Thushara, P. A. N.; Godakumbura, P. I.; Prashantha, M. A. B. Importance, Health Benefits and Bioactivities of Sri Lankan Traditional Rice (Oryza sativa L.) Varieties: A Review. Int. J. Agric. Environ. Bioresearch 2019, 4 (5), 119–128. DOI: 10.35410/IJAEB.2019.119128.
3. Priya, T. S. R.; Eliazer Nelson, A. R. L.; Ravichandran, K.; Antony, U. Nutritional and Functional Properties of Coloured Rice Varieties of South India: A Review. J. Ethn. Foods 2019, 6 (1), 1–11. DOI: 10.1186/s42779-019-0013-1.
4. Gunaratne, A.; Wu, K.; Li, D.; Bentota, A.; Corke, H.; Cai, Y. Z. Antioxidant Activity and Nutritional Quality of Traditional Red-Grained Rice Varieties Containing Proanthocyanidins. Food Chem. 2013, 138 (2–3), 1153–1161. DOI: 10.1016/j.foodchem.2012.11.122.
5. Srisawat, U.; Panunto, W.; Kaendee, N.; Tanuchit, S.; Itharat, A.; Lerdvuthisopon, N.; Hansakul, P. Determination of Phenolic Compounds, Flavonoids, and Antioxidant Activities in Water Extracts of Thai Red and White Rice Cultivars. J. Med. Assoc. Thail. 2010, 93, S83–S91. DOI:10.1055/s-0030-1264431
6. Pang, Y.; Ahmed, S.; Xu, Y.; Beta, T.; Zhu, Z.; Shao, Y.; Bao, J. Bound Phenolic Compounds and Antioxidant Properties of Whole Grain and Bran of White, Red and Black Rice. Food Chem. 2018, 240, 212–221. DOI: 10.1016/j.foodchem.2017.07.095.
7. Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic Acids, Anthocyanins, Proanthocyanidins, Antioxidant Activity, Minerals and Their Correlations in Non-Pigmented, Red, and Black Rice. Food Chem. 2018, 239, 733–741. DOI: 10.1016/j.foodchem.2017.07.009.
8. Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and Quantification of Phenolic Acids and Anthocyanins as Antioxidants in Bran, Embryo and Endosperm of White, Red and Black Rice Kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59 (2), 211–218. DOI: 10.1016/j.jcs.2014.01.004.
9. Ashraf, A. M.; Begam, S. N.; Sivagamy, K.; Vijayashanthi, V. A.; Yogameenakshi, P. Exploring the Bioactives and Therapeutic Properties of Traditional Rice Landraces for Human Health and Food Security: A Review. Asian J. Dairy Food Res. 2024. DOI: 10.18805/ajdfr.dr-2260.
10. Zhang, L.; Cui, D.; Ma, X.; Han, B.; Han, L. Comparative Analysis of Rice Reveals Insights into the Mechanism of Colored Rice via Widely Targeted Metabolomics. Food Chem. 2023, 399, 133926. DOI: 10.1016/j.foodchem.2022.133926
11. Ito, V. C.; Lacerda, L. G. Black Rice (Oryza sativa L.): A Review of Its Historical Aspects, Chemical Composition, Nutritional and Functional Properties, and Applications and Processing Technologies. Food Chem. 2019, 301, 125304. DOI: 10.1016/j.foodchem.2019.125304
12. Mau, J.-L.; Lee, C.-C.; Chen, Y.-P.; Lin, S.-D. Physicochemical, Antioxidant and Sensory Characteristics of Chiffon Cake Prepared with Black Rice as Replacement for Wheat Flour. LWT 2016, 75, 434–439. DOI: 10.1016/j.lwt.2016.09.019.
13. Niu, Y.; Gao, B.; Slavin, M.; Zhang, X.; Yang, F.; Bao, J.; Yu, L. L. Phytochemical Compositions, and Antioxidant and Anti-Inflammatory Properties of Twenty-Two Red Rice Samples Grown in Zhejiang. LWT–Food Sci. Technol. 2013, 54 (2), 521–527. DOI: 10.1016/j.lwt.2013.06.018
14. Subramanian, V.; Dhandayuthapani, U. N.; Kandasamy, S.; Sivaprakasam, J. V.; Balasubramaniam, P.; Shanmugam, M. K.; Nagappan, S.; Elangovan, S.; Subramani, U. K.; Palaniyappan, K.; Vellingiri, G.; Muthurajan, R. Unravelling the Metabolomic Diversity of Pigmented and Non-Pigmented Traditional Rice from Tamil Nadu, India. BMC Plant Biol. 2024, 24 (1). DOI: 10.1186/s12870-024-05123-3.
15. Amudha, K.; Geetha, S.; Manimekalai, M.; Ganesamurthy, K. Rice Landraces of Tamil Nadu–A Review. Indian J. Tradit. Knowl. 2023, 22 (1), 17–29. DOI: 10.56042/ijtk.v22i1.43677
16. Howden, J. A.; Chong, Y. H.; Leung, S. Y.; Rabuco, L. B.; Sakamoto, M.; Tchai, B.-S.; Tontisiri, K.; Wahlqvist, M. L.; Winarno, F. G.; Yap, M. J. Breakfast Practices in the Asian Region. Asia Pac. J. Clin. Nutr. 1993, 2 (2), 77–84.
17. Nitikornwarakul, C.; Wangpradid, R.; Sirimuangmoon, C.; Lekjing, S.; Nishioka, A.; Koda, T. Nutritious Elderly Diet: Pigmented Rice-Porridge from Shear-Heat Milling Process. Ital. J. Food Sci. 2022, 34 (3), 25–34. DOI: 10.15586/ijfs.v34i3.2241.
18. Qin, H.; Wu, H.; Shen, K.; Liu, Y.; Li, M.; Wang, H.; Qiao, Z.; Mu, Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022, 11 (20), 3155. DOI: 10.3390/foods11203155.
19. Jaiswal, S.; Pradhan, S. N.; Jain, D.; Dhassiah, P.; Antony, U. Probiotic and Functional Characterization of Pediococcus acidilactici Isolated from Bhaati Jaanr, Traditional Fermented Rice Porridge. Appl. Biochem. Biotechnol. 2022, 194 (12), 5734–5747. DOI: 10.1007/s12010-022-04041-0.
20. Mir, M. A.; Sawhney, S. S.; Jassal, M. M. S. Qualitative and Quantitative Analysis of Phytochemicals of Taraxacum officinale. Wudpecker J. Pharm. Pharmacol. 2013, 2 (1), 1–5.
21. Jeba, R. C.; Pooja, S.; Priyanka, P. Antioxidant and Antibacterial Work of Methanolic Extract of Helicteres isora. Plant Cell Biotechnol. Mol. Biol. 2021, 22 (39 & 40), 199–209.
22. Maurya, S.; Singh, D. Quantitative Analysis of Total Phenolic Content in Adhatoda vasica Nees Extracts. Int. J. PharmTech Res. 2010, 2 (4), 2403–2406.
23. Ghafar, F.; Tengku Nazrin, T. N. N.; Mohd Salleh, M. R.; Nor Hadi, N.; Ahmad, N.; Azahari, A. Total Phenolic Content and Total Flavonoid Content in Moringa oleifera Seed. Galeri Waris. Sains 2017, 1 (1), 23–35. DOI: 10.26480/gws.01.2017.23.25
24. Tamilselvi, N.; Krishnamoorthy, P.; Dhamotharan, R.; Arumugam, P.; Sagadevan, E. Analysis of Total Phenols, Total Tannins and Screening of Phytocomponents in Indigofera aspalathoides (Shivanar Vembu) Vahl EX DC. J. Chem. Pharm. Res. 2012, 4 (6), 3259–3262.
25. Noipa, T.; Srijaranai, S.; Tuntulani, T.; Ngeontae, W. New Approach for Evaluation of the Antioxidant Capacity Based on Scavenging DPPH Free Radical in Micelle Systems. Food Res. Int. 2011, 44 (3), 798–806. DOI: 10.1016/j.foodres.2011.01.034
26. Zhu, P.; Zhang, Y.; Zhang, D.; Han, L.; Liu, H.; Sun, B. Inhibitory Mechanism of Advanced Glycation End-Product Formation by Avenanthramides Derived from Oats through Scavenging the Intermediates. Foods 2022, 11 (12), 1813. DOI: 10.3390/foods11121813.
27. Bailey-Shaw, Y. A.; Williams, L. A.; Green, C. E.; Rodney, S.; Smith, A. M. In-Vitro Evaluation of the Anti-Inflammatory Potential of Selected Jamaican Plant Extracts Using the Bovine Serum Albumin Protein Denaturation Assay. Int. J. Pharm. Sci. Rev. Res. 2017, 47 (1), 145–153.
28. Ferosekhan, M.; Ramu, A.; Ravikumar, S. Scientific Evaluation of Traditionally Known Insulin Plant Costus Species for the Treatment of Diabetes in Human. Int. J. Curr. Res. Biosci. Plant Biol. 2016, 3 (6), 87–91. DOI:10.20546/ijcrbp.2016.306.011.
29. Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65 (1–2), 55–63. DOI: 10.1016/0022-1759(83)90303-4.
30. Boonyanugomol, W.; Rukseree, K.; Prapatpong, P.; Reamtong, O.; Baik, S. C.; Jung, M.; Lee, W. K. An In Vitro Anti-Cancer Activity of Ocimum tenuiflorum Essential Oil by Inducing Apoptosis in Human Gastric Cancer Cell Line. Medicina 2021, 57 (8), 784. DOI: 10.3390/medicina57080784
31. Mwamatope, B.; Chikowe, I.; Tembo, D. T.; Kamanula, J. F.; Masumbu, F. F. F.; Kumwenda, F. D. Phytochemical Composition and Antioxidant Activity of Edible Wild Fruits from Malawi. Biomed Res. Int. 2023, 2023, 1–9. DOI: 10.1155/2023/2621434.
32. Casado, N.; Casado-Hidalgo, G.; González-Gómez, L.; Morante-Zarcero, S.; Sierra, I. Insight into the Impact of Food Processing and Culinary Preparations on the Stability and Content of Plant Alkaloids Considered as Natural Food Contaminants. Appl. Sci. 2023, 13 (3), 1704. DOI: 10.3390/app13031704
33. Wang, T.; He, F.; Chen, G. Improving Bioaccessibility and Bioavailability of Phenolic Compounds in Cereal Grains through Processing Technologies: A Concise Review. J. Funct. Foods 2014, 7, 101–111. DOI: 10.1016/j.jff.2014.01.033.
34. Adebo, O. A.; Medina-Meza, I. G. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020, 25 (4), 927. DOI: 10.3390/molecules25040927.
35. Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and Enzyme Treatment of Tannin Sorghum Gruels: Effects on Phenolic Compounds, Phytate and In Vitro Accessible Iron. Food Chem. 2006, 94 (3), 369–376. DOI: 10.1016/j.foodchem.2004.11.027.
36. Tsafrakidou, P.; Michaelidou, A. M.; Biliaderis, C. G. Fermented Cereal-Based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020, 9 (6), 734. DOI: 10.3390/foods9060734
37. Juan, M.-Y.; Chou, C.-C. Enhancement of Antioxidant Activity, Total Phenolic and Flavonoid Content of Black Soybeans by Solid State Fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 2010, 27 (5), 586–591. DOI: 10.1016/j.fm.2009.11.002.
38. Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Kumar, D. Antioxidant Functionalized Nanoparticles: A Combat Against Oxidative Stress. Nanomaterials 2020, 10 (7), 1334. DOI: 10.3390/nano10071334.
39. Priyadarshini, R. D.; Beatrice, D. A.; Sivaraj, C. Antioxidant Potential, Antidiabetic, and Anti-Inflammatory Activities of White Cowpea (Vigna unguiculata L.): An In Vitro Study. Asian J. Biol. Life Sci. 2023, 12 (3), 565. DOI: 10.5530/ajbls.2023.12.74.
40. Prasathkumar, M.; Raja, K.; Vasanth, K.; Khusro, A.; Sadhasivam, S.; Sahibzada, M. U. K.; et al. Phytochemical Screening and In Vitro Antibacterial, Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Wound Healing Attributes of Senna auriculata (L.) Roxb. Leaves. Arab. J. Chem. 2021, 14 (9), 103345. DOI: 10.1016/j.arabjc.2021.103345.
41. Dey, T. B.; Chakraborty, S.; Jain, K. K.; Sharma, A.; Kuhad, R. C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. DOI: 10.1016/j.tifs.2016.04.007
42. Zhao, G. R.; Zhang, H. M.; Ye, T. X.; Xiang, Z. J.; Yuan, Y. J.; Guo, Z. X.; Zhao, L. B. Characterization of the Radical Scavenging and Antioxidant Activities of Danshensu and Salvianolic Acid B. Food Chem. Toxicol. 2008, 46 (1), 73–81. DOI: 10.1016/j.fct.2007.06.034
43. Samtiya, M.; Aluko, R. E.; Puniya, A. K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7 (2), 63. DOI: 10.3390/fermentation7020063
44. Verni, M.; Rizzello, C. G.; Coda, R. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Front. Nutr. 2019, 6, 42. DOI: 10.3389/fnut.2019.00042
45. Sharif, M.; John, P.; Bhatti, A.; Paracha, R. Z.; Majeed, A. Evaluation of the Inhibitory Mechanism of Pennisetum glaucum (Pearl Millet) Bioactive Compounds for Rheumatoid Arthritis: An In Vitro and Computational Approach. Front. Pharmacol. 2024, 15, 1488790. DOI: 10.3389/fphar.2024.1488790
46. Nguyen, T. H. Assessing Radical Scavenging Activity, Potential Antidiabetic, Antigout and In Vitro Anti-Inflammatory Properties of Syzygium nervosum A. Cunn. ex DC. Grown in Vietnam. J. Agric. Food Res. 2023, 12, 100614. DOI: 10.1016/j.jafr.2023.100614
47. Mani, N.; Beatrice, D. A.; Priyadarshini, R. D. Phytochemical Analysis, In Vitro Antioxidant, Anti-Diabetic and Anti-Inflammatory Activity of Red Kidney Bean (Phaseolus vulgaris L.). Int. J. Health Allied Sci. 2024, 13 (2), 4. DOI: 10.55691/2278-344X.1095
48. Maleki, S. J.; Crespo, J. F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. DOI: 10.1016/j.foodchem.2019.125124
49. Manchope, M. F.; Bertozzi, M. M.; Borghi, S. M.; Handa, C. L.; Queiroz-Cancian, M. A.; Ferraz, C. R.; et al. Fermented (By Monascus purpureus or Aspergillus oryzae) and Non-Fermented Defatted Soybean Flour Extracts: Biological Insight and Mechanism Differences in Inflammatory Pain and Peritonitis. Fermentation 2023, 9 (2), 167. DOI: 10.3390/fermentation9020167
50. Zhao, Y.; Li, M.; Wang, Y.; Geng, R.; Fang, J.; Liu, Q.; et al. Understanding the Mechanism Underlying the Anti-Diabetic Effect of Dietary Component: A Focus on Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2023, 63 (25), 7378–7398. DOI: 10.1080/10408398.2022.2045895
51. Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. DOI: 10.1016/j.biotechadv.2021.107763
52. Haokip, T.; Beatrice, A. D.; Priyadarshini, D. R. In Vivo and In Vitro Anti-Diabetic Activity of Stinky Beans (Parkia speciosa): A Systematic Review. Discov. Food 2024, 4 (1), 111. DOI: 10.1007/s44187-024-00175-8
53. Saleh, M. S. M.; Jalil, J.; Mustafa, N. H.; Ramli, F. F.; Asmadi, A. Y.; Kamisah, Y. UPLC-MS-Based Metabolomics Profiling for α-Glucosidase Inhibiting Property of Parkia speciosa Pods. Life 2021. DOI: 10.3390/life11020078.
54. Binou, P.; Yanni, A. E.; Karathanos, V. T. Physical Properties, Sensory Acceptance, Postprandial Glycemic Response, and Satiety of Cereal-Based Foods Enriched with Legume Flours: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62 (10), 2722–2740. DOI: 10.1080/10408398.2020.1858020
55. Liu, B. H.; Wu, T. S.; Su, M. C.; Chung, C. P.; Yu, F. Y. Evaluation of Citrinin Occurrence and Cytotoxicity in Monascus Fermentation Products. J. Agric. Food Chem. 2005, 53 (1), 170–175. DOI: 10.1021/jf048878n
56. Chang, C. Y.; Pan, T. M. Identification of Bioactive Compounds in Lactobacillus paracasei subsp. paracasei NTU 101-Fermented Reconstituted Skimmed Milk and Their Anti-Cancer Effect in Combination with 5-Fluorouracil on Colorectal Cancer Cells. Food Funct. 2019, 10 (12), 7634–7644. DOI: 10.1039/C9FO01819K
57. Guo, Z.; Zhao, B.; Song, Y.; Yan, W.; Xue, L.; Liu, X.; et al. Red Fermented Rice Elution Fractions Inhibits Cancer Cell Proliferation by Regulating the FGFR1/PI3K/AKT Signaling Pathway. Fitoterapia 2024, 177, 106079. DOI: 10.1016/j.fitote.2024.106079
58. Adebo, O. A.; Oyeyinka, S. A.; Adebiyi, J. A.; Feng, X.; Wilkin, J. D.; Kewuyemi, Y. O.; Tugizimana, F. Application of Gas Chromatography–Mass Spectrometry (GC-MS)-Based Metabolomics for the Study of Fermented Cereal and Legume Foods: A Review. Int. J. Food Sci. Technol. 2021, 56 (4), 1514–1534. DOI: 10.1111/ijfs.14794
59. Sheela, P.; UmaMaheswari, T.; Kanchana, S.; Hemalatha, G.; Vellaikumar, S. Identification of Volatile Compounds in Fermented Millet-Based Beverages by Gas Chromatography–Mass Spectroscopy. App. Biol. Res. 2021, 245-254. DOI: 10.5958/0974-4517.2021.00031.8
60. Scalzo, R.; Morassut, M.; Rapisarda, P. Oxygen radical scavenging capacity of phenolic and non-phenolic compounds in red and white wines. Cent. Eur. J. Biol. 2012, 7(1), 146–158.
61. Kao, T.T.; Wang, M.C.; Chen, Y.H.; Chung, Y.T.; Hwang, P.A. Propylene glycol improves stability of the anti-inflammatory compounds in Scutellaria baicalensis extract. Processes 2021, 9(5), 894.
62. Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement. Altern. Med. 2011, 11(1), 1–10.
63. Anand, R.; Kaithwas, G. Anti-inflammatory potential of alpha-linolenic acid mediated through selective COX inhibition: computational and experimental data. Inflammation 2014, 37, 1297–1306.
64. Álvarez-Sala, A.; Ávila-Gálvez, M.Á.; Cilla, A.; Barberá, R.; Garcia-Llatas, G.; Espín, J.C.; González-Sarrías, A. Physiological concentrations of phytosterols enhance the apoptotic effects of 5-fluorouracil in colon cancer cells. J. Funct. Foods. 2018, 49, 52–60.