1. Tharakan, M.; Lonczak, L. Supporting skin structure and its barrier functions with evidence-based skin care ingredients. J. Cosmet. Dermatological Sci. Appl. 2024, 14 (2), 200-210. DOI: https://doi.org/10.4236/jcdsa.2024.142013.
DOI: https://doi.org/10.4236/jcdsa.2024.142013
2. Khalid, K.A.; Nawi, A.F.M.; Zulkifli, N.; Barkat, M.A.; Hadi, H. Aging and wound healing of the skin: a review of clinical and pathophysiological hallmarks. Life. 2022, 12 (12), 1-12. DOI: https://doi.org/10.3390/life12122142.
DOI: https://doi.org/10.3390/life12122142
3. Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021, 22 (22), 1-17. DOI: https://doi.org/10.3390/ijms222212489.
DOI: https://doi.org/10.3390/ijms222212489
4. Nautiyal, A.; Wairkar, S. Management of hyperpigmentation: current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021, 34 (6), 1000-1014. DOI: https://doi.org/10.1111/pcmr.12986.
DOI: https://doi.org/10.1111/pcmr.12986
5. Putri, S.A.; Maharani, R.; Maksum, I.P.; Siahaan, T.J. Peptide design for enhanced anti-melanogenesis: optimizing molecular weight, polarity, and cyclization. Drug Des. Devel. Ther. 2025, 19, 645-670. DOI: https://doi.org/10.2147/DDDT.S500004.
DOI: https://doi.org/10.2147/DDDT.S500004
6. Ghasemiyeh, P.; Fazlinejad, R.; Kiafar, M.R.; Rasekh, S.; Mokhtarzadegan, M.; Samani, S.M. Different therapeutic approaches in melasma: advances and limitations. Front. Pharmacol. 2024, 15, 1-27. DOI: https://doi.org/10.3389/fphar.2024.1337282.
DOI: https://doi.org/10.3389/fphar.2024.1337282
7. Peng, X.; Ma, Y.; Yan, C.; Wei, X.; Zhang, L.; Jiang, H.; Ma, Y.; Zhang, S.; Xing, M.; Gao, Y. Mechanism, formulation, and efficacy evaluation of natural products for skin pigmentation treatment. Pharmaceutics. 2024, 16 (8), 1-26. DOI: https://doi.org/10.3390/pharmaceutics16081022.
DOI: https://doi.org/10.3390/pharmaceutics16081022
8. Draelos, Z.D.; Deliencourt-Godefroy, G.; Lopes, L. An effective hydroquinone alternative for topical skin lightening. J. Cosmet. Dermatol. 2020, 19 (12), 3258-3261. DOI: https://doi.org/10.1111/JOCD.13771.
DOI: https://doi.org/10.1111/jocd.13771
9. de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T. Essential oils: chemistry and pharmacological activities-partII. Biomolecules. 2024, 13 (7), 1-29. DOI: https://doi.org/10.3390/biom13071144.
DOI: https://doi.org/10.3390/biom13071144
10. Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules. 2021, 26 (3), 1-24. DOI: https://doi.org/10.3390/molecules26030666.
DOI: https://doi.org/10.3390/molecules26030666
11. Johnson, S.A.; Rodriguez, D.; Allred, K. A systematic review of essential oils and the endocannabinoid system: a connection worthy of further exploration. Evidence-based Complement. Altern. Med. 2020, 2020, 1-13. DOI: https://doi.org/10.1155/2020/8035301.
DOI: https://doi.org/10.1155/2020/8035301
12. Begum, T.; Gogoi, R.; Sarma, N.; Pandey, S.K.; Lal, M. Novel ethyl p-methoxy cinnamate rich Kaempferia galanga (L.) essential oil and its pharmacological applications: special emphasis on anticholinesterase, anti-tyrosinase, α-amylase inhibitory, and genotoxic efficiencies. PeerJ. 2023, 11, 1-23. DOI: https://doi.org/10.7717/peerj.14606.
DOI: https://doi.org/10.7717/peerj.14606
13. Lestari, U.; Muhaimin, M.; Chaerunisaa, A.Y.; Sujarwo, W. Anti-aging potential of plants of the anak dalam tribe, Jambi, Indonesia. Pharmaceuticals. 2023, 16 (9), 1-23. DOI: https://doi.org/10.3390/ph16091300.
DOI: https://doi.org/10.3390/ph16091300
14. Munda, S.; Saikia, P.; Lal, M. Chemical composition and biological activity of essential oil of Kaempferia galanga: a review. J. Essent. Oil Res. 2018, 30 (5), 303-308. DOI: https://doi.org/10.1080/10412905.2018.1486240.
DOI: https://doi.org/10.1080/10412905.2018.1486240
15. Syafri, S.; Zai, F.D.; Hanifah, N.N.; Putri, A.Z.; Hamidi, D. Exploring the therapeutic potential: metabolite profiling, antibacterial action, and antiaging properties of essential oils from Curcuma mangga, Boesenbergia rotunda, and Zingiber purpureum rhizomes. Int. J. Appl. Pharm. 2025, 17 (1), 138-145. DOI: https://dx.doi.org/10.22159/ijap.2025.v17s1.21.
DOI: https://doi.org/10.22159/ijap.2025.v17s1.21
16. Yadav, S.K. Physiochemical properties of essential oils and applications. In Essential oil-advances in extractions and biological applications; Publisher: Intechopen, Brazil, 2022; 1-13.
17. Kisan, M.; Sangathan, S.; Nehru, J. Determination of refractive index. In Methods of sampling and test for natural and synthetic perfumery materials, 3rd ed.; Publisher: Bureau of Indian Standards, India, 2006; 3, 1-3.
18. Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29 (3), 559-566. DOI: 10.1111/j.1751-1097.1979.tb07090.x.
DOI: https://doi.org/10.1111/j.1751-1097.1979.tb07090.x
19. BPOM. Pedoman Persyaratan Teknis Penandaan Kosmetika Sediaan Tabir Surya, Appendix II; Publisher: Badan Pengawasan Obat dan Makanan Republik Indonesia, Indonesia, 2020; 19-22.
20. Sirat, H.M.; Meng, L.L. Chemical components of the rhizome oil of Curcuma heyneana Val. Malaysian J. Sci. 2009, 28 (3), 323-328. DOI: https://doi.org/10.22452/mjs.vol28no3.10.
DOI: https://doi.org/10.22452/mjs.vol28no3.10
21. Raina, A.P.; Abraham, Z. Chemical profiling of essential oil of Kaempferia galanga L. germplasm from India. J. Essent. Oil Res. 2016, 28 (1), 29-34. DOI: https://dx.doi.org/10.1016/j.indcrop.2015.02.052.
DOI: https://doi.org/10.1080/10412905.2015.1077165
22. Wang, S.Y.; Cai, L.; Yang, N.; Xu, F.F.; Wu, Y.S.; Liu, B. Chemical composition of the Kaempferia galanga L. essential oil and its in vitro and in vivo antioxidant activities. Front. Nutr. 2023, 10, 1-10. DOI: https://doi.org/10.3389/fnut.2023.1080487.
DOI: https://doi.org/10.3389/fnut.2023.1080487
23. Ivanović, M.; Makoter, K.; Razboršek, M.I. Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic Zingiberaceae herbs. Plants. 2021, 10 (3), 1-20. DOI: https://doi.org/10.3390/plants10030501.
DOI: https://doi.org/10.3390/plants10030501
24. Sangthong, S.; Promputtha, I.; Pintathong, P.; Chaiwut, P. Chemical constituents, antioxidant, anti-tyrosinase, cytotoxicity, and anti-melanogenesis activities of Etlingera elatior (Jack) leaf essential oils. Molecules. 2022, 27 (11), 1-13. DOI: https://doi.org/10.3390/molecules27113469.
DOI: https://doi.org/10.3390/molecules27113469
25. Mutakin.; Sapterini, N.M.; Amalia, R.; Sumiwi, S.A.; Megantara, S.; Saputri, F.A.; Levita, J. Molecular docking simulation of phenolics towards tyrosinase, phenolic content, and radical scavenging activity of some Zingiberaceae plant extracts. Cosmetics. 2023, 10 (6), 1-14. DOI: https://doi.org/10.3390/cosmetics10060149.
DOI: https://doi.org/10.3390/cosmetics10060149
26. Criton, M.; Mellay-Hamon, V.L. Dimeric cinnamoylamide derivatives as inhibitors of melanogenesis. Biol. Pharm. Bull. 2011, 34 (3), 420-425. DOI: https://doi.org/10.1248/bpb.34.420.
DOI: https://doi.org/10.1248/bpb.34.420
27. Ko, H.J.; Kim, H.J.; Kim, S.Y.; Yun, H.Y.; Baik, K.J.; Kwon, N.S.; Whang, W.K.; Choi, H.R.; Park, K.C.; Kim, D.S. Hypopigmentary effects of ethyl p-methoxycinnamate isolated from Kaempferia galanga. Phyther. Res. 2014, 28 (2), 274-279. DOI: https://doi.org/10.1002/ptr.4995.
DOI: https://doi.org/10.1002/ptr.4995
28. de Freitas, Z.M.F.; dos Santos, E.P.; de Rocha, J.F.; Dellamora-Ortiz, G.M.; Goncalves, J.C.S. A new sunscreen of the cinnamate class: synthesis and enzymatic hydrolysis evaluation of glyceryl esters of p-methoxycinnamic acid. Eur. J. Pharm. Sci. 2005, 25 (1), 67-72. DOI: https://doi.org/10.1016/j.ejps.2005.01.018.
DOI: https://doi.org/10.1016/j.ejps.2005.01.018
29. Lorigo, M.; Cairrao, E. Antioxidants as stabilizers of UV filters: an example for the UV-B filter octylmethoxycinnamate. Biomed. Dermatology. 2019, 3 (1), 1-9. DOI: https://doi.org/10.1186/s41702-019-0048-9.
DOI: https://doi.org/10.1186/s41702-019-0048-9
30. Ramírez, D.; Caballero, J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?. Molecules. 2018, 23 (5), 1-17. DOI: https://doi.org/10.3390/molecules23051038.
DOI: https://doi.org/10.3390/molecules23051038
31. De Vita, S.; Chini, M.G.; Bifulco, G.; Lauro, G. Insights into the ligand binding to bromodomain-containing protein 9 (BRD9): a guide to the selection of potential binders by computational methods. Molecules. 2021, 26 (23), 1-27. DOI: https://doi.org/10.3390/molecules26237192.
DOI: https://doi.org/10.3390/molecules26237192
32. Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. Med. Chem. Comm. 2018, 9 (5), 853-861. DOI: https://doi.org/10.1039/c8md00099a.
DOI: https://doi.org/10.1039/C8MD00099A