1. Wiewiorska-Krata, N.; Foroncewicz, B.; Mucha, K.; Zagozdzon, R. Cell therapies for immune-mediated disorders. Front Med (Lausanne) 2025, 12, 1550527, DOI: 10.3389/fmed.2025.1550527
DOI: https://doi.org/10.3389/fmed.2025.1550527
2. Collaborators, G. B. D. O. M. D. Global, regional, and national burden of other musculoskeletal disorders, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol 2023, 5 (11), e670-e682, DOI: 10.1016/S2665-9913(23)00232-1
DOI: https://doi.org/10.1016/S2665-9913(23)00232-1
3. Jiang, F.; Lu, C.; Zeng, Z.; Sun, Z.; Qiu, Y. Global burden of disease for musculoskeletal disorders in all age groups, from 2024 to 2050, and a bibliometric-based survey of the status of research in geriatrics, geriatric orthopedics, and geriatric orthopedic diseases. J Orthop Surg Res 2025, 20 (1), 179, DOI: 10.1186/s13018-025-05580-y
DOI: https://doi.org/10.1186/s13018-025-05580-y
4. Das, S.; Thakur, A.; Datta, A.; Sahoo, A.; Bandyopadhyay, S.; Sah, A. K. Advances in Regenerative Medicine for Orthopedic Injuries: A Comprehensive Review. Cureus 2025, 17 (2), e79860, DOI: 10.7759/cureus.79860
DOI: https://doi.org/10.7759/cureus.79860
5. Parums, D. V. A Review of CAR T Cells and Adoptive T-Cell Therapies in Lymphoid and Solid Organ Malignancies. Med Sci Monit 2025, 31, e948125, DOI: 10.12659/MSM.948125
DOI: https://doi.org/10.12659/MSM.948125
6. Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocinska, M. K.; Majka, M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023, 14, 1127704, DOI: 10.3389/fimmu.2023.1127704
DOI: https://doi.org/10.3389/fimmu.2023.1127704
7. Pittenger, M. F.; Discher, D. E.; Peault, B. M.; Phinney, D. G.; Hare, J. M.; Caplan, A. I. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019, 4, 22, DOI: 10.1038/s41536-019-0083-6
DOI: https://doi.org/10.1038/s41536-019-0083-6
8. Trapana, J.; Weinerman, J.; Lee, D.; Sedani, A.; Constantinescu, D.; Best, T. M.; Hornicek, F. J., Jr.; Hare, J. M. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024, 13 (10), 959-978, DOI: 10.1093/stcltm/szae049
DOI: https://doi.org/10.1093/stcltm/szae049
9. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284 (5411), 143-147, DOI: 10.1126/science.284.5411.143
DOI: https://doi.org/10.1126/science.284.5411.143
10. Rath, M.; Spinnen, J.; Kuhrt, L. D.; Priglinger, E.; Seika, P.; Runge, D.; Schubring, S.; Laue, D.; Wickert, M.; Erdem, M.; et al. Platelet-rich plasma - A comprehensive review of isolation, activation, and application. Acta Biomater 2025, 204, 52-75, DOI: 10.1016/j.actbio.2025.07.050
DOI: https://doi.org/10.1016/j.actbio.2025.07.050
11. Xiong, Y.; Gong, C.; Peng, X.; Liu, X.; Su, X.; Tao, X.; Li, Y.; Wen, Y.; Li, W. Efficacy and safety of platelet-rich plasma injections for the treatment of osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2023, 10, 1204144, DOI: 10.3389/fmed.2023.1204144
DOI: https://doi.org/10.3389/fmed.2023.1204144
12. Yue, L.; Lim, R.; Owens, B. D. Latest Advances in Chondrocyte-Based Cartilage Repair. Biomedicines 2024, 12 (6), DOI: 10.3390/biomedicines12061367
DOI: https://doi.org/10.3390/biomedicines12061367
13. Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994, 331 (14), 889-895, DOI: 10.1056/NEJM199410063311401
DOI: https://doi.org/10.1056/NEJM199410063311401
14. Milliron, E. M.; Cavendish, P. A.; Carey, J.; Barker, T.; Flanigan, D. C. Use of MACI (Autologous Cultured Chondrocytes on Porcine Collagen Membrane) in the United States: Expanded Experience over 5,000 Cases. Cartilage 2025, 19476035251319404, DOI: 10.1177/19476035251319404
DOI: https://doi.org/10.1177/19476035251319404
15. Peterson, L.; Minas, T.; Brittberg, M.; Nilsson, A.; Sjogren-Jansson, E.; Lindahl, A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000, (374), 212-234, DOI: 10.1097/00003086-200005000-00020
DOI: https://doi.org/10.1097/00003086-200005000-00020
16. Ebert, J. R.; Edwards, P. K.; Klinken, S.; Fallon, M.; Wood, D. J.; Janes, G. C. 10-Year Clinical and MRI-Based Outcomes of a Randomized Controlled Trial Evaluating a 6-Week Return to Full Weightbearing After Matrix-Induced Autologous Chondrocyte Implantation. Orthop J Sports Med 2025, 13 (10), 23259671251383136, DOI: 10.1177/23259671251383136
DOI: https://doi.org/10.1177/23259671251383136
17. Bian, L.; Zhai, D. Y.; Mauck, R. L.; Burdick, J. A. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 2011, 17 (7-8), 1137-1145, DOI: 10.1089/ten.TEA.2010.0531
DOI: https://doi.org/10.1089/ten.tea.2010.0531
18. Cooke, M. E.; Allon, A. A.; Cheng, T.; Kuo, A. C.; Kim, H. T.; Vail, T. P.; Marcucio, R. S.; Schneider, R. A.; Lotz, J. C.; Alliston, T. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis Cartilage 2011, 19 (10), 1210-1218, DOI: 10.1016/j.joca.2011.07.005
DOI: https://doi.org/10.1016/j.joca.2011.07.005
19. Zuo, Q.; Cui, W.; Liu, F.; Wang, Q.; Chen, Z.; Fan, W. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. Int Orthop 2013, 37 (4), 747-752, DOI: 10.1007/s00264-013-1782-z
DOI: https://doi.org/10.1007/s00264-013-1782-z
20. Esmaeili, A.; Hosseini, S.; Kamali, A.; Hosseinzadeh, M.; Shekari, F.; Baghaban Eslaminejad, M. Co-aggregation of MSC/chondrocyte in a dynamic 3D culture elevates the therapeutic effect of secreted extracellular vesicles on osteoarthritis in a rat model. Sci Rep 2022, 12 (1), 19827, DOI: 10.1038/s41598-022-22592-4
DOI: https://doi.org/10.1038/s41598-022-22592-4
21. Adkisson, H. D. t.; Martin, J. A.; Amendola, R. L.; Milliman, C.; Mauch, K. A.; Katwal, A. B.; Seyedin, M.; Amendola, A.; Streeter, P. R.; Buckwalter, J. A. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 2010, 38 (7), 1324-1333, DOI: 10.1177/0363546510361950
DOI: https://doi.org/10.1177/0363546510361950
22. Lee, J.; Lee, J. Y.; Chae, B. C.; Jang, J.; Lee, E.; Son, Y. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo. Cell Transplant 2017, 26 (10), 1673-1687, DOI: 10.1177/0963689717724794
DOI: https://doi.org/10.1177/0963689717724794
23. He, A.; Ye, A.; Song, N.; Liu, N.; Zhou, G.; Liu, Y.; Ye, X. Phenotypic redifferentiation of dedifferentiated microtia chondrocytes through a three-dimensional chondrogenic culture system. Am J Transl Res 2020, 12 (6), 2903-2915,
24. Lindberg, E. D.; Wu, T.; Cotner, K. L.; Glazer, A.; Jamali, A. A.; Sohn, L. L.; Alliston, T.; O'Connell, G. D. Priming chondrocytes during expansion alters cell behavior and improves matrix production in 3D culture. Osteoarthritis Cartilage 2024, 32 (5), 548-560, DOI: 10.1016/j.joca.2023.12.006
DOI: https://doi.org/10.1016/j.joca.2023.12.006
25. Matricali, G. A.; Dereymaeker, G. P.; Luyten, F. P. Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop Belg 2010, 76 (5), 669-674,
26. Peterson, L.; Vasiliadis, H. S.; Brittberg, M.; Lindahl, A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010, 38 (6), 1117-1124, DOI: 10.1177/0363546509357915
DOI: https://doi.org/10.1177/0363546509357915
27. Malige, A.; Gates, C.; Cook, J. L. Mesenchymal stem cells in orthopaedics: A systematic review of applications to practice. J Orthop 2024, 58, 1-9, DOI: 10.1016/j.jor.2024.06.026
DOI: https://doi.org/10.1016/j.jor.2024.06.026
28. Ding, Q. X.; Wang, X.; Li, T. S.; Li, Y. F.; Li, W. Y.; Gao, J. H.; Liu, Y. R.; Zhuang, W. Comparative Analysis of Short-Term and Long-Term Clinical Efficacy of Mesenchymal Stem Cells from Different Sources in Knee Osteoarthritis: A Network Meta-Analysis. Stem Cells Int 2024, 2024, 2741681, DOI: 10.1155/2024/2741681
DOI: https://doi.org/10.1155/2024/2741681
29. Lee, S.; Chae, D. S.; Song, B. W.; Lim, S.; Kim, S. W.; Kim, I. K.; Hwang, K. C. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int J Mol Sci 2021, 22 (19), DOI: 10.3390/ijms221910586
DOI: https://doi.org/10.3390/ijms221910586
30. Jeyaraman, M.; Muthu, S.; Jeyaraman, N.; Ranjan, R.; Jha, S. K.; Mishra, P. Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis. Indian J Orthop 2022, 56 (1), 1-15, DOI: 10.1007/s43465-021-00439-w
DOI: https://doi.org/10.1007/s43465-021-00439-w
31. Pico, O. A.; Espinoza, F.; Cadiz, M. I.; Sossa, C. L.; Becerra-Bayona, S. M.; Salgado, M. C. C.; Rodriguez, J. E. R.; Cardenas, O. F. V.; Cure, J. M. Q.; Khoury, M.; Arango-Rodriguez, M. L. Efficacy of a single dose of cryopreserved human umbilical cord mesenchymal stromal cells for the treatment of knee osteoarthritis:a randomized, controlled, double-blind pilot study. Cytotherapy 2025, 27 (2), 188-200, DOI: 10.1016/j.jcyt.2024.09.005
DOI: https://doi.org/10.1016/j.jcyt.2024.09.005
32. Bagno, L. L.; Salerno, A. G.; Balkan, W.; Hare, J. M. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther 2022, 22 (4), 449-463, DOI: 10.1080/14712598.2022.2016695
DOI: https://doi.org/10.1080/14712598.2022.2016695
33. Han, X.; Liao, R.; Li, X.; Zhang, C.; Huo, S.; Qin, L.; Xiong, Y.; He, T.; Xiao, G.; Zhang, T. Mesenchymal stem cells in treating human diseases: molecular mechanisms and clinical studies. Signal Transduct Target Ther 2025, 10 (1), 262, DOI: 10.1038/s41392-025-02313-9
DOI: https://doi.org/10.1038/s41392-025-02313-9
34. Wang, G.; Xing, D.; Liu, W.; Zhu, Y.; Liu, H.; Yan, L.; Fan, K.; Liu, P.; Yu, B.; Li, J. J.; Wang, B. Preclinical studies and clinical trials on mesenchymal stem cell therapy for knee osteoarthritis: A systematic review on models and cell doses. Int J Rheum Dis 2022, 25 (5), 532-562, DOI: 10.1111/1756-185X.14306
DOI: https://doi.org/10.1111/1756-185X.14306
35. Jancuska, J.; Matthews, J.; Miller, T.; Kluczynski, M. A.; Bisson, L. J. A Systematic Summary of Systematic Reviews on the Topic of the Rotator Cuff. Orthop J Sports Med 2018, 6 (9), 2325967118797891, DOI: 10.1177/2325967118797891
DOI: https://doi.org/10.1177/2325967118797891
36. Little, D.; Amadio, P. C.; Awad, H. A.; Cone, S. G.; Dyment, N. A.; Fisher, M. B.; Huang, A. H.; Koch, D. W.; Kuntz, A. F.; Madi, R.; et al. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023, 41 (10), 2133-2162, DOI: 10.1002/jor.25678
DOI: https://doi.org/10.1002/jor.25678
37. Chang, C.; Yan, J.; Yao, Z.; Zhang, C.; Li, X.; Mao, H. Q. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater 2021, 10 (7), e2001689, DOI: 10.1002/adhm.202001689
DOI: https://doi.org/10.1002/adhm.202001689
38. Knight, M. N.; Hankenson, K. D. Mesenchymal Stem Cells in Bone Regeneration. Adv Wound Care (New Rochelle) 2013, 2 (6), 306-316, DOI: 10.1089/wound.2012.0420
DOI: https://doi.org/10.1089/wound.2012.0420
39. Jiang, L.; Lu, J.; Chen, Y.; Lyu, K.; Long, L.; Wang, X.; Liu, T.; Li, S. Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). Int J Mol Med 2023, 52 (2), DOI: 10.3892/ijmm.2023.5273
DOI: https://doi.org/10.3892/ijmm.2023.5273
40. Acharya, S.; Shaha, S.; Bibbey, M. G.; Mukherji, M.; Zhao, Z.; Mitragotri, S. Stem cell therapies in the clinic. Bioeng Transl Med 2025, 10 (3), e70000, DOI: 10.1002/btm2.70000
DOI: https://doi.org/10.1002/btm2.70000
41. Martin, I.; Galipeau, J.; Kessler, C.; Le Blanc, K.; Dazzi, F. Challenges for mesenchymal stromal cell therapies. Sci Transl Med 2019, 11 (480), DOI: 10.1126/scitranslmed.aat2189
DOI: https://doi.org/10.1126/scitranslmed.aat2189
42. Yu, J.; Vodyanik, M. A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J. L.; Tian, S.; Nie, J.; Jonsdottir, G. A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318 (5858), 1917-1920, DOI: 10.1126/science.1151526
DOI: https://doi.org/10.1126/science.1151526
43. Ali, E. A. M.; Smaida, R.; Meyer, M.; Ou, W.; Li, Z.; Han, Z.; Benkirane-Jessel, N.; Gottenberg, J. E.; Hua, G. iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review. Stem Cell Res Ther 2024, 15 (1), 185, DOI: 10.1186/s13287-024-03794-1
DOI: https://doi.org/10.1186/s13287-024-03794-1
44. O'Brien, A.; Xu, M.; O'Connell, E.; Morrison, A. M.; Shaw, G.; Dutton, J. R.; Murphy, M.; Barry, F. Development of an iPSC-based screening platform identifying enhancers of chondrogenesis. Osteoarthr Cartil Open 2025, 7 (4), 100680, DOI: 10.1016/j.ocarto.2025.100680
DOI: https://doi.org/10.1016/j.ocarto.2025.100680
45. Lee, M. S.; Lin, E. C.; Sivapatham, A.; Leiferman, E. M.; Jiao, H.; Lu, Y.; Nemke, B. W.; Leiferman, M.; Markel, M. D.; Li, W. J. Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model. Stem Cell Res Ther 2025, 16 (1), 86, DOI: 10.1186/s13287-025-04215-7
DOI: https://doi.org/10.1186/s13287-025-04215-7
46. Wu, Q.; Yang, B.; Hu, K.; Cao, C.; Man, Y.; Wang, P. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering. Tissue Eng Part B Rev 2017, 23 (1), 1-8, DOI: 10.1089/ten.TEB.2015.0559
DOI: https://doi.org/10.1089/ten.teb.2015.0559
47. Rosochowicz, M. A.; Lach, M. S.; Richter, M.; Suchorska, W. M.; Trzeciak, T. iPSC-conditioned medium mitigates the adverse effects of osteoarthritic synovial fluid on chondrocyte cultures. Biochem Biophys Res Commun 2025, 777, 152336, DOI: 10.1016/j.bbrc.2025.152336
DOI: https://doi.org/10.1016/j.bbrc.2025.152336
48. Berrigan, W.; Tao, F.; Kopcow, J.; Park, A. L.; Allen, I.; Tahir, P.; Reddy, A.; Bailowitz, Z. The Effect of Platelet Dose on Outcomes after Platelet Rich Plasma Injections for Musculoskeletal Conditions: A Systematic Review and Meta-Analysis. Curr Rev Musculoskelet Med 2024, 17 (12), 570-588, DOI: 10.1007/s12178-024-09922-x
DOI: https://doi.org/10.1007/s12178-024-09922-x
49. Filardo, G.; Di Matteo, B.; Di Martino, A.; Merli, M. L.; Cenacchi, A.; Fornasari, P.; Marcacci, M.; Kon, E. Platelet-Rich Plasma Intra-articular Knee Injections Show No Superiority Versus Viscosupplementation: A Randomized Controlled Trial. Am J Sports Med 2015, 43 (7), 1575-1582, DOI: 10.1177/0363546515582027
DOI: https://doi.org/10.1177/0363546515582027
50. Bennell, K. L.; Paterson, K. L.; Metcalf, B. R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of Intra-articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA 2021, 326 (20), 2021-2030, DOI: 10.1001/jama.2021.19415
DOI: https://doi.org/10.1001/jama.2021.19415
51. Mishra, A. K.; Skrepnik, N. V.; Edwards, S. G.; Jones, G. L.; Sampson, S.; Vermillion, D. A.; Ramsey, M. L.; Karli, D. C.; Rettig, A. C. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med 2014, 42 (2), 463-471, DOI: 10.1177/0363546513494359
DOI: https://doi.org/10.1177/0363546513494359
52. Ahmad, Z.; Ang, S.; Rushton, N.; Harvey, A.; Akhtar, K.; Dawson-Bowling, S.; Noorani, A. Platelet-Rich Plasma Augmentation of Arthroscopic Rotator Cuff Repair Lowers Retear Rates and Improves Short-Term Postoperative Functional Outcome Scores: A Systematic Review of Meta-Analyses. Arthrosc Sports Med Rehabil 2022, 4 (2), e823-e833, DOI: 10.1016/j.asmr.2021.12.012
DOI: https://doi.org/10.1016/j.asmr.2021.12.012
53. Zhu, C.; Wu, W.; Qu, X. Mesenchymal stem cells in osteoarthritis therapy: a review. Am J Transl Res 2021, 13 (2), 448-461,
54. Jayaram, P.; Danilkowicz, R. M.; Yuan, X. Ethical and Regulatory Considerations Related to Regenerative Medicine. HSS J 2025, 15563316251361511, DOI: 10.1177/15563316251361511
DOI: https://doi.org/10.1177/15563316251361511
55. Baker, D. J.; Arany, Z.; Baur, J. A.; Epstein, J. A.; June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023, 619 (7971), 707-715, DOI: 10.1038/s41586-023-06243-w
DOI: https://doi.org/10.1038/s41586-023-06243-w
56. Yu, T.; Jiang, W.; Wang, Y.; Zhou, Y.; Jiao, J.; Wu, M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024, 64 (4), DOI: 10.3892/ijo.2024.5628
DOI: https://doi.org/10.3892/ijo.2024.5628
57. Li, G.; Wang, H.; Meftahpour, V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI J 2024, 23, 364-383, DOI: 10.17179/excli2023-6760
58. Koksal, H.; Muller, E.; Inderberg, E. M.; Bruland, O.; Walchli, S. Treating osteosarcoma with CAR T cells. Scand J Immunol 2019, 89 (3), e12741, DOI: 10.1111/sji.12741
DOI: https://doi.org/10.1111/sji.12741
59. Mensali, N.; Koksal, H.; Joaquina, S.; Wernhoff, P.; Casey, N. P.; Romecin, P.; Panisello, C.; Rodriguez, R.; Vimeux, L.; Juzeniene, A.; et al. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun 2023, 14 (1), 3375, DOI: 10.1038/s41467-023-39097-x
DOI: https://doi.org/10.1038/s41467-023-39097-x
60. Mitra, A.; Barua, A.; Huang, L.; Ganguly, S.; Feng, Q.; He, B. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol 2023, 14, 1188049, DOI: 10.3389/fimmu.2023.1188049
DOI: https://doi.org/10.3389/fimmu.2023.1188049
61. Hou, Y.; Hu, S.; Liu, C.; Chen, X.; Wang, Y.; Li, Y.; Fu, Z.; Feng, C.; Gong, Y.; Liu, Z.; Peng, S. Beyond CAR-T Cells: exploring CAR-NK, CAR-M, and CAR-gammadelta T strategies in solid tumor immunotherapy. Front Immunol 2025, 16, 1675807, DOI: 10.3389/fimmu.2025.1675807
DOI: https://doi.org/10.3389/fimmu.2025.1675807
62. Ahmed, N.; Brawley, V. S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol 2015, 33 (15), 1688-1696, DOI: 10.1200/JCO.2014.58.0225
DOI: https://doi.org/10.1200/JCO.2014.58.0225
63. Lachota, M.; Vincenti, M.; Winiarska, M.; Boye, K.; Zagozdzon, R.; Malmberg, K. J. Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020, 12 (12), DOI: 10.3390/cancers12123719
DOI: https://doi.org/10.3390/cancers12123719
64. Oei, V. Y. S.; Siernicka, M.; Graczyk-Jarzynka, A.; Hoel, H. J.; Yang, W.; Palacios, D.; Almasbak, H.; Bajor, M.; Clement, D.; Brandt, L.; et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res 2018, 6 (4), 467-480, DOI: 10.1158/2326-6066.CIR-17-0207
DOI: https://doi.org/10.1158/2326-6066.CIR-17-0207
65. Kailayangiri, S.; Altvater, B.; Spurny, C.; Jamitzky, S.; Schelhaas, S.; Jacobs, A. H.; Wiek, C.; Roellecke, K.; Hanenberg, H.; Hartmann, W.; et al. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology 2017, 6 (1), e1250050, DOI: 10.1080/2162402X.2016.1250050
DOI: https://doi.org/10.1080/2162402X.2016.1250050
66. Fradin, J. J.; Charlson, J. A. Review of Adoptive Cellular Therapies for the Treatment of Sarcoma. Cancers (Basel) 2025, 17 (8), DOI: 10.3390/cancers17081302
DOI: https://doi.org/10.3390/cancers17081302
67. Anyfanti, P.; Evangelidis, P.; Kotsiou, N.; Papakonstantinou, A.; Eftychidis, I.; Sakellari, I.; Dimitroulas, T.; Gavriilaki, E. Chimeric Antigen Receptor T Cell Immunotherapy for Autoimmune Rheumatic Disorders: Where Are We Now? Cells 2025, 14 (16), DOI: 10.3390/cells14161242
DOI: https://doi.org/10.3390/cells14161242
68. Mackensen, A.; Muller, F.; Mougiakakos, D.; Boltz, S.; Wilhelm, A.; Aigner, M.; Volkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med 2022, 28 (10), 2124-2132, DOI: 10.1038/s41591-022-02017-5
DOI: https://doi.org/10.1038/s41591-022-02017-5
69. Sakkas, L. I.; Katsiari, C.; Syrmou, V.; Chikanza, I. C. CAR-T cells in systemic sclerosis. Clin Rheumatol 2025, DOI: 10.1007/s10067-025-07554-1
DOI: https://doi.org/10.1007/s10067-025-07554-1
70. Haase, I.; Richter, J.; Holzer, M. T.; Fehse, B.; Ruffer, N.; Seibel, J.; Berger, S. C.; Gagelmann, N.; Borie, D.; Ayuk, F.; et al. A novel approach to refractory idiopathic inflammatory myopathy: CD19 CAR T-cell therapy-case report and literature review. Rheumatology (Oxford) 2025, 64 (9), 5101-5107, DOI: 10.1093/rheumatology/keaf190
DOI: https://doi.org/10.1093/rheumatology/keaf190
71. Hojati Shargh, M. M.; Mahmoudi, M.; Agah, S. A. A.; Forouzanfar, F.; Javanmardi, Z.; Fadaee, A.; Haghmorad, D.; Esmaeili, S. A. CAR T-cell therapy in autoimmune diseases: Opportunities and challenges, with implications for RA. Tissue Cell 2025, 98, 103164, DOI: 10.1016/j.tice.2025.103164
DOI: https://doi.org/10.1016/j.tice.2025.103164
72. Suri-Payer, E.; Fritzsching, B. Regulatory T cells in experimental autoimmune disease. Springer Semin Immunopathol 2006, 28 (1), 3-16, DOI: 10.1007/s00281-006-0021-8
DOI: https://doi.org/10.1007/s00281-006-0021-8
73. Komatsu, N.; Takayanagi, H. Regulatory T cells in Arthritis. Prog Mol Biol Transl Sci 2015, 136, 207-215, DOI: 10.1016/bs.pmbts.2015.07.021
DOI: https://doi.org/10.1016/bs.pmbts.2015.07.021
74. Pikor, L. A.; Arivazhagan, S.; Mendicino, M.; Sathiamoorthy, S. Navigating the manufacturing, testing and regulatory complexities of regulatory T cells for adoptive cell therapy. Front Immunol 2025, 16, 1626085, DOI: 10.3389/fimmu.2025.1626085
DOI: https://doi.org/10.3389/fimmu.2025.1626085
75. Hu, M.; Zhou, Y.; Yao, Z.; Tang, Y.; Zhang, Y.; Liao, J.; Cai, X.; Liu, L. T cell dysregulation in rheumatoid arthritis: Recent advances and natural product interventions. Int Immunopharmacol 2025, 153, 114499, DOI: 10.1016/j.intimp.2025.114499
DOI: https://doi.org/10.1016/j.intimp.2025.114499
76. Yan, S.; Kotschenreuther, K.; Deng, S.; Kofler, D. M. Regulatory T cells in rheumatoid arthritis: functions, development, regulation, and therapeutic potential. Cell Mol Life Sci 2022, 79 (10), 533, DOI: 10.1007/s00018-022-04563-0
DOI: https://doi.org/10.1007/s00018-022-04563-0
77. Bulliard, Y.; Freeborn, R.; Uyeda, M. J.; Humes, D.; Bjordahl, R.; de Vries, D.; Roncarolo, M. G. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024, 15, 1509956, DOI: 10.3389/fimmu.2024.1509956
DOI: https://doi.org/10.3389/fimmu.2024.1509956
78. Zhang, Q.; Lu, W.; Liang, C. L.; Chen, Y.; Liu, H.; Qiu, F.; Dai, Z. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front Immunol 2018, 9, 2359, DOI: 10.3389/fimmu.2018.02359
DOI: https://doi.org/10.3389/fimmu.2018.02359
79. MacDonald, K. G.; Hoeppli, R. E.; Huang, Q.; Gillies, J.; Luciani, D. S.; Orban, P. C.; Broady, R.; Levings, M. K. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 2016, 126 (4), 1413-1424, DOI: 10.1172/JCI82771
DOI: https://doi.org/10.1172/JCI82771
80. Dawson, N. A.; Lamarche, C.; Hoeppli, R. E.; Bergqvist, P.; Fung, V. C.; McIver, E.; Huang, Q.; Gillies, J.; Speck, M.; Orban, P. C.; et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019, 4 (6), DOI: 10.1172/jci.insight.123672
DOI: https://doi.org/10.1172/jci.insight.123672
81. Muller, Y. D.; Ferreira, L. M. R.; Ronin, E.; Ho, P.; Nguyen, V.; Faleo, G.; Zhou, Y.; Lee, K.; Leung, K. K.; Skartsis, N.; et al. Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Front Immunol 2021, 12, 686439, DOI: 10.3389/fimmu.2021.686439
DOI: https://doi.org/10.3389/fimmu.2021.686439
82. Arjomandnejad, M.; Kopec, A. L.; Keeler, A. M. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines 2022, 10 (2), DOI: 10.3390/biomedicines10020287
DOI: https://doi.org/10.3390/biomedicines10020287
83. Beheshti, S. A.; Shamsasenjan, K.; Ahmadi, M.; Abbasi, B. CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2022, 102, 108409, DOI: 10.1016/j.intimp.2021.108409
DOI: https://doi.org/10.1016/j.intimp.2021.108409
84. Riet, T.; Chmielewski, M. Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Front Immunol 2022, 13, 934343, DOI: 10.3389/fimmu.2022.934343
DOI: https://doi.org/10.3389/fimmu.2022.934343
85. Asnagli, H.; Martire, D.; Belmonte, N.; Quentin, J.; Bastian, H.; Boucard-Jourdin, M.; Fall, P. B.; Mausset-Bonnefont, A. L.; Mantello-Moreau, A.; Rouquier, S.; et al. Type 1 regulatory T cells specific for collagen type II as an efficient cell-based therapy in arthritis. Arthritis Res Ther 2014, 16 (3), R115, DOI: 10.1186/ar4567
DOI: https://doi.org/10.1186/ar4567
86. Sun, G.; Hou, Y.; Gong, W.; Liu, S.; Li, J.; Yuan, Y.; Zhang, D.; Chen, Q.; Yan, X. Adoptive Induced Antigen-Specific Treg Cells Reverse Inflammation in Collagen-Induced Arthritis Mouse Model. Inflammation 2018, 41 (2), 485-495, DOI: 10.1007/s10753-017-0704-4
DOI: https://doi.org/10.1007/s10753-017-0704-4
87. Zavvar, M.; Abdolmaleki, M.; Farajifard, H.; Noorbakhsh, F.; Azadmanesh, K.; Vojgani, M.; Nikcnam, M. H. Collagen II-primed Foxp3 Transduced T Cells Ameliorate Collagen-induced Arthritis in Rats: The Effect of Antigenic Priming on T Regulatory Cell Function. Iran J Allergy Asthma Immunol 2018, 17 (4), 361-371, DOI: 10.18502/ijaai.v17i4.95
DOI: https://doi.org/10.18502/ijaai.v17i4.95