Ogita S., Uefuji H. et al., Metabolic engineering of caffeine production, Plant Biotechnology, 2005, 22, 461-468.
DOI: https://doi.org/10.5511/plantbiotechnology.22.461
Sereshti H., Samadi S., A rapid and simple determination of caffeine in teas, coffees and eight beverages, Food Chemistry, 2014, 158, 8-13.
DOI: https://doi.org/10.1016/j.foodchem.2014.02.095
Waldvogel S.R., Caffeine — A drug with a surprise, Angewandte Chemie — International Edition, 2003, 42, 604-605.
DOI: https://doi.org/10.1002/anie.200390173
Siwek R., Witkowska-Banaszczak E., Szumański M., Kofeina w lekach i suplementach diety — znaczenie w lecznictwie, Farmacja Polska, 2013, 69(9), 541-549.
Lovett-Doust J., Plant strategies, vegetation processes, and ecosystem properties, 2002.
DOI: https://doi.org/10.1658/1100-9233(2002)013[0294:PSVPAE]2.0.CO;2
Vignoli J.A., Viegas M.C. et al., Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees, Food Research International, 2014, 61, 279-285.
DOI: https://doi.org/10.1016/j.foodres.2013.06.006
Dąbrowska-Molenda M., Szwedziak K., Zabłudowska Ż., Analiza zawartości kofeiny w wybranych rodzajach kawy, Postępy Techniki Przetwórstwa Spożywczego, 2019, 68-71.
Ameca G.M., Cerrilla M.E.O. et al., Chemical composition and antioxidant capacity of coffee pulp, Ciencia e Agrotecnologia, 2018, 42, 307-313.
DOI: https://doi.org/10.1590/1413-70542018423000818
Farah A., Coffee Constituents. Coffee: emerging health effects and disease prevention, 2012, 21-58.
DOI: https://doi.org/10.1002/9781119949893.ch2
Gross G., Jaccaud E. et al., Analysis of the content of the diterpenes cafestol and kahweol in coffee brews, Food and Chemical Toxicology, 1997, 35, 547-554.
DOI: https://doi.org/10.1016/S0278-6915(96)00123-8
Tajik N., Tajik M., et al., The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature, European Journal of Nutrition, 2017, 56, 2215-2244.
DOI: https://doi.org/10.1007/s00394-017-1379-1
Mohamadi N., Sharififar F. et al., A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid, Journal of Dietary Supplements, 2018, 15, 207-222.
DOI: https://doi.org/10.1080/19390211.2017.1329244
Riedel A., Lang R. et al., Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: Regulation of nicotinic acid receptor and fatty acid transporter expression, Journal of Nutritional Biochemistry, 2014, 25, 750-777.
DOI: https://doi.org/10.1016/j.jnutbio.2014.03.002
Sharma L., Lone N.A. et al., Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy, Food and Chemical Toxicology, 2018, 121, 283-296.
DOI: https://doi.org/10.1016/j.fct.2018.09.011
Yoshinari O., Sato H. et al., Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on goto-kakizaki rats, Bioscience, Biotechnology and Biochemistry, 2009, 73, 1033-1041.
DOI: https://doi.org/10.1271/bbb.80805
Rendón M.Y., dos Santos Scholz M.B. et al., Physical characteristics of the paper filter and low cafestol content filter coffee brews, Food Research International, 2018, 108, 280-285.
DOI: https://doi.org/10.1016/j.foodres.2018.03.041
Urgert .R., Essed N. et al., Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases, American Journal of Clinical Nutrition, 1997, 65, 519-524.
DOI: https://doi.org/10.1093/ajcn/65.2.519
Post S.M., De Wit E.C.M. et al., Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase in rat hepatocytes, Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3064-3070.
DOI: https://doi.org/10.1161/01.ATV.17.11.3064
Lima C.S., Spindola D.G. et al. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death, Biomedicine and Pharmacotherapy, 2017, 92, 1045-1054.
DOI: https://doi.org/10.1016/j.biopha.2017.05.109
Mellbye F.B., Jeppesen P.B. et al., Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice, Journal of Natural Products, 2017, 80, 2353-2259.
DOI: https://doi.org/10.1021/acs.jnatprod.7b00395
Shokouh P., Jeppesen P.B. et al., A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome, Nutrients, 2018; 10, 1-15.
DOI: https://doi.org/10.3390/nu10010006
van Cruchten S.T.J., Cafestol : a multi-faced compound kinetics and metabolic effects of cafestol in mice, PhD Thesis, 2010.
Baek J.H., Kim N.J. et al., Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK), BMB Reports, 2017, 50, 566-571.
DOI: https://doi.org/10.5483/BMBRep.2017.50.11.031
Lee K.J., Jeong H.G., Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage, Toxicology Letters, 2007, 173, 80-87.
DOI: https://doi.org/10.1016/j.toxlet.2007.06.008
Oh S.H., Hwang Y.P. et al. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells, Food and Chemical Toxicology, 2018, 121, 326-335.
DOI: https://doi.org/10.1016/j.fct.2018.09.008
Yoon J.J., Danesh-Meyer H.V., Caffeine and the eye, Survey of Ophthalmology, 2019, 64, 334-344.
DOI: https://doi.org/10.1016/j.survophthal.2018.10.005
Echeverri D., Montes F.R. et al., Caffeine’s vascular mechanisms of action, International Journal of Vascular Medicine, 2010, Article ID 834060.
DOI: https://doi.org/10.1155/2010/834060
Schuster J., Mitchell E.S., More than just caffeine: psychopharmacology of methylxanthine interactions with plantderived phytochemicals, Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 89, 263-274.
DOI: https://doi.org/10.1016/j.pnpbp.2018.09.005
Sheriffdeen M.M., Alehaideb Z.I. et al., Caffeine/Angelica dahurica and caffeine/Salvia miltiorrhiza metabolic inhibition in humans: In vitro and in vivo studies. Complementary Therapies in Medicine, 2019, 46, 87-94.
DOI: https://doi.org/10.1016/j.ctim.2019.07.024
Voskoboinik A., Koh Y. et al., Cardiovascular effects of caffeinated beverages, Trends in Cardiovascular Medicine, 2019, 29, 345-350.
DOI: https://doi.org/10.1016/j.tcm.2018.09.019
Voskoboinik A., Kalman J.M. et al., Caffeine and Arrhythmias: Time to Grind the Data, JACC: Clinical Electrophysiology 2018, 4, 425-432.
DOI: https://doi.org/10.1016/j.jacep.2018.01.012
Strubelt O., Diederich K.W., Experimental treatment of the acute cardiovascular toxicity of caffeine, Journal of Toxicology — Clinical Toxicology, 1999, 37, 29-33.
DOI: https://doi.org/10.1081/CLT-100102405
Abdelfattah R., Kamran H. et al., Does caffeine consumption increase the risk of new-onset atrial fibrillation?, Cardiology (Switzerland), 2018, 140, 106-114.
DOI: https://doi.org/10.1159/000489843
Zuchinali P., Ribeiro P.A.B. et al., Effect of caffeine on ventricular arrhythmia: A systematic review and meta-analysis of experimental and clinical studies, Europace, 2016, 18, 257-266.
DOI: https://doi.org/10.1093/europace/euv261
Richardson T., Baker J. et al., Randomized control trial investigating the influence of coffee on heart rate variability in patients with STsegment elevation myocardial infarction, Qjm, 2009, 102, 555-561.
DOI: https://doi.org/10.1093/qjmed/hcp072
Akash M.S.H., Rehman K. et al., Effects of coffee on type 2 diabetes mellitus, Nutrition 2014, 30, 755-763.
DOI: https://doi.org/10.1016/j.nut.2013.11.020
Lavie C.J., DiNicolantonio J.J. et al., Editorial commentary: Coffee, tea, and cardiovascular morbidity and mortality, Trends in Cardiovascular Medicine, 2019, 29, 351-352.
DOI: https://doi.org/10.1016/j.tcm.2018.11.016
Akash M.S.H., Rehman K. et al., Sustained delivery of IL-1Ra from PF127-gel reduces hyperglycemia in diabetic GK-rats, PLoS ONE, 2013, 8, 1-12.
DOI: https://doi.org/10.1371/journal.pone.0055925
Trexler E.T., Smith-Ryan A.E. et al., International society of sports nutrition position stand: Beta-Alanine., Journal of the International Society of Sports Nutrition, 2015, 12, 1-16.
DOI: https://doi.org/10.1186/s12970-015-0090-y
Yamaji T., Mizoue T. et al., Coffee consumption and glucose tolerance status in middle-aged Japanese men, Diabetologia, 2004, 47, 2145-2151.
DOI: https://doi.org/10.1007/s00125-004-1590-5
Wu T., Willett W.C. et al., Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women, Diabetes Care, 2005, 28, 1390-1396.
DOI: https://doi.org/10.2337/diacare.28.6.1390
Smith B., Wingard D.L. et al., Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose?, Diabetes Care, 2006, 29, 2385-2390.
DOI: https://doi.org/10.2337/dc06-1084
van Dam R.M., Feskens E.J.M., Coffee consumption and risk of type 2 diabetes mellitus, Lancet, 2002, 360(9344), 1477-1478.
DOI: https://doi.org/10.1016/S0140-6736(02)11436-X
Tuomilehto J., Hu G. et al.,Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women, JAMA, 2004, 291, 1213-1239.
DOI: https://doi.org/10.1001/jama.291.10.1213
Agardh E.E., Carlsson S. et al., Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women, Journal of Internal Medicine, 2004, 255, 645-652.
DOI: https://doi.org/10.1111/j.1365-2796.2004.01331.x
Muley A., Muley P. et al., Coffee to reduce risk of type 2 diabetes? : A systematic review, Current Diabetes Reviews, 2012, 8, 162-168.
DOI: https://doi.org/10.2174/157339912800564016
Shearer J., Farah A. et al., Quinides of roasted coffee enhance insulin action in conscious rats, The Journal of Nutrition, 2003, 133, 3529-3532.
DOI: https://doi.org/10.1093/jn/133.11.3529
Santos R.M.M., Lima D.R.A., Coffee consumption, obesity and type 2 diabetes: a mini-review, European Journal of Nutrition, 2016, 55, 1345-1358.
DOI: https://doi.org/10.1007/s00394-016-1206-0
Choi B.K., Park S.B. et al., Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice, Asian Pacific Journal of Tropical Medicine, 2016, 9, 635-643.
DOI: https://doi.org/10.1016/j.apjtm.2016.05.017
Farias-Pereira R., Oshiro J. et al., Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans, Journal of Functional Foods, 2018, 48, 586-593.
DOI: https://doi.org/10.1016/j.jff.2018.07.049
Huang K., Liang X. et al., 5-Caffeoylquinic acid decreases dietinduced obesity in rats by modulating PPARα and LXRα transcription, Journal of the Science of Food and Agriculture, 2015, 95, 1903-1910.
DOI: https://doi.org/10.1002/jsfa.6896
Ong K.W., Hsu A. et al., Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation, Biochemical Pharmacology, 2013, 85, 1341-1351.
DOI: https://doi.org/10.1016/j.bcp.2013.02.008
Jia H., Aw W. et al. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat dietinduced obese mice, Genes and Nutrition, 2014, 9, 389-395.
DOI: https://doi.org/10.1007/s12263-014-0389-3
Murase T., Misawa K. et al., Coffee polyphenols suppress dietinduced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice, American Journal of Physiology — Endocrinology and Metabolism, 2011, 300, 122-133.
DOI: https://doi.org/10.1152/ajpendo.00441.2010
Sudeep H.V., Venkatakrishna K. et. al., Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver, BMC Complementary and Alternative Medicine, 2016, 16, 4-8.
DOI: https://doi.org/10.1186/s12906-016-1258-y
Zheng G., Qiu Y. et al., Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolismrelated enzymes in mice, British Journal of Nutrition, 2014, 112, 1034-1040.
DOI: https://doi.org/10.1017/S0007114514001652
Proença A.R.G., Sertié R.A.L. et al. New concepts in white adipose tissue physiology, Brazilian Journal of Medical and Biological Research, 2014, 47, 192-205.
DOI: https://doi.org/10.1590/1414-431X20132911
Wang Z., Lam K.L. et al., Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice, Food Science and Nutrition, 2019, 7, 579-588.
DOI: https://doi.org/10.1002/fsn3.868
Egawa T., Hamada T. et al. Caffeine activates preferentially α1-isoform of 5′AMP-activated protein kinase in rat skeletal muscle, Acta Physiologica, 2011, 201, 227-238.
DOI: https://doi.org/10.1111/j.1748-1716.2010.02169.x
Mathew T.S., Ferris R.K. et al., Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase, Biochemical and Biophysical Research Communications, 2014, 453, 411-418.
DOI: https://doi.org/10.1016/j.bbrc.2014.09.094
Ong K.W., Hsu A. et al., Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: A contributor to the beneficial effects of coffee on diabetes, PLoS ONE 2012, 7, e32718.
DOI: https://doi.org/10.1371/journal.pone.0032718
Zhang S.J., Li Y.F. et al., Caffeine ameliorates high energy dietinduced hepatic steatosis: Sirtuin 3 acts as a bridge in the lipid metabolism pathway, Food and Function, 2015, 6, 2578-2587.
DOI: https://doi.org/10.1039/C5FO00247H
Zheng X., Dai W. et al., Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae, Journal of Biomedical Science, 2015, 22, 1-12.
DOI: https://doi.org/10.1186/s12929-015-0206-3
Ma Y., Gao M. et al., Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice, Pharmaceutical Research, 2015, 32, 1200-1209.
DOI: https://doi.org/10.1007/s11095-014-1526-9
Ontawong A., Boonphang O. et al., Hepatoprotective effect of coffee pulp aqueous extract combined with simvastatin against hepatic steatosis in high-fat diet-induced obese rats, Journal of Functional Foods, 2019, 54, 568-577.
DOI: https://doi.org/10.1016/j.jff.2019.02.011
Schnuck J.K., Gould L.M. et al., Metabolic effects of physiological levels of caffeine in myotubes, Journal of Physiology and Biochemistry, 2018, 74, 35-45.
DOI: https://doi.org/10.1007/s13105-017-0601-1
Ontawong A., Duangjai A. et al., Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats, Phytomedicine, 2019, 52, 187-197.
DOI: https://doi.org/10.1016/j.phymed.2018.06.021
Flanagan J., Bily A. et al., Lipolytic activity of svetol®, a decaffeinated green coffee bean extract, Phytotherapy Research, 2014, 28, 946-948.
DOI: https://doi.org/10.1002/ptr.5085
Vandenberghe C., St-Pierre V. et al., Caffeine intake increases plasma ketones: An acute metabolic study in humans, Canadian Journal of Physiology and Pharmacology, 2017, 95, 455-458.
DOI: https://doi.org/10.1139/cjpp-2016-0338
Carrageta D.F., Dias T.R. et al., Anti-obesity potential of natural methylxanthines, Journal of Functional Foods, 2018, 43, 84-94.
DOI: https://doi.org/10.1016/j.jff.2018.02.001
Qian J., Zhang Y. et al. Caffeine consumption during early pregnancy impairs oviductal embryo transport, embryonic development and uterine receptivity in mice, Biology of Reproduction, 2018,99, 1266-1275.
DOI: https://doi.org/10.1093/biolre/ioy155
Qian J., Chen Q. et al., Impacts of caffeine during pregnancy, Trends in Endocrinology and Metabolism 2019, 31, 218-227.
DOI: https://doi.org/10.1016/j.tem.2019.11.004
Silva C.G., Métin C. et al., Adenosine receptor antagonists including caffeine alter fetal brain development in mice., Science Translational Medicine, 2013, 5, 104-116.
DOI: https://doi.org/10.1126/scitranslmed.3006258
Fazeli W., Zappettini S. et al. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice, Experimanetal Neurology, 2017, 295, 88-103.
DOI: https://doi.org/10.1016/j.expneurol.2017.05.013
Zappettini S., Faivre E.et al., Caffeine consumption during pregnancy accelerates the development of cognitive deficits in offspring in a model of tauopathy, Frontiers in Cellular Neuroscience, 2019, 13, Article No 438.
DOI: https://doi.org/10.3389/fncel.2019.00438
Galéra C., Bernard J.Y. et al. Prenatal caffeine exposure and child IQ at age 5.5 years: The EDEN — Mother-Child Cohort, Biological Psychiatry ,2016, 80, 720-726.
DOI: https://doi.org/10.1016/j.biopsych.2015.08.034
Ward R.M., Bates B.A., et al., The transfer of drugs and other chemicals into human milk, Pediatrics 2001, 108, 776-789.
DOI: https://doi.org/10.1542/peds.108.3.776
EFSA Journal, Scientific opinion on the safety of caffeine, 2015.
Rudolph T., Knudsen K., A case of fatal caffeine poisoning, Acta Anaesthesiologica Scandinavica, 2010, 54, 521-523.
DOI: https://doi.org/10.1111/j.1399-6576.2009.02201.x
Kato Y., Kuriyama A.et al., Extracorporeal membrane oxygenation for hypokalemia and refractory ventricular fibrillation associated with caffeine intoxication, Journal of Emergency Medicine, 2019, 5, 1-4.
DOI: https://doi.org/10.1016/j.jemermed.2019.09.023
Juliano L.M., Griffiths R.R., A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features, Psychopharmacology, 2004, 176, 1-29.
DOI: https://doi.org/10.1007/s00213-004-2000-x
Lara D.R., Caffeine, mental health, and psychiatric disorders, Journal of Alzheimer’s Disease, 2010, 20, 1-4.
DOI: https://doi.org/10.3233/JAD-2010-1378
Grant S.S., Magruder K.P. et al., Controlling for caffeine in cardiovascular research: A critical review, International Journal of Psychophysiology, 2018, 133, 193-201.
DOI: https://doi.org/10.1016/j.ijpsycho.2018.07.001
Alstadhaug K.B., Andreou A.P., Caffeine and primary (migraine) headaches — friend or foe?, Frontiers in Neurology, 2019, 10, 1-13.
DOI: https://doi.org/10.3389/fneur.2019.01275
Lane J.D., Effects of brief caffeinated-beverage deprivation on mood, symptoms, and psychomotor performance, Pharmacology Biochemistry and Behavior, 1997, 58, 203-208.
DOI: https://doi.org/10.1016/S0091-3057(97)00007-5