Korkmaz, N.; Dayangaç, A.; Sevindik, M. Antioxidant, antimicrobial and antiproliferative activities of Galium aparine. J. Fac. Pharm. Ankara, 2021, 45(3), 554-564.
DOI: https://doi.org/10.33483/jfpau.977776
Unal, O.; Eraslan, E. C.; Uysal, I.; Mohammed, F. S.; Sevindik, M.; Akgul, H. Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environmental Bulletin, 2022, 31(7), 7341-7346.
Mohammed, F. S.; Korkmaz, N.; Doğan, M.; Şabik, A. E.; Sevindik, M. Some medicinal properties of Glycyrrhiza glabra (Licorice). Journal of Faculty of Pharmacy of Ankara University, 2021, 45(3), 524-534.
DOI: https://doi.org/10.33483/jfpau.979200
Mohammed, F. S.; Akgul, H.; Sevindik, M.; Khaled, B. M. T. Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environmental Bulletin, 2018, 27(8), 5694-5702.
Krupodorova, T.; Sevindik, M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Scientific Journal, 2020, 9(1), 186-191.
Mohammed, F. S.; Günal, S.; Şabik, A. E.; Akgül, H.; Sevindik, M. Antioxidant and Antimicrobial activity of Scorzonera papposa collected from Iraq and Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2020, 23(5), 1114-1118.
DOI: https://doi.org/10.18016/ksutarimdoga.vi.699457
Mohammed, F. S.; Karakaş, M.; Akgül, H.; Sevindik, M. Medicinal properties of Allium calocephalum collected from Gara Mountain (Iraq). Fresen Environ Bull, 2019, 28(10), 7419-7426.
Mohammed, F. S.; Pehlivan, M.; Sevindik, E.; Akgul, H.; Sevindik, M.; Bozgeyik, I.; Yumrutas, O. Pharmacological properties of edible Asparagus acutifolius and Asparagus officinalis collected from North Iraq and Turkey (Hatay). Acta Alimentaria, 2021, 50(1), 136-143.
DOI: https://doi.org/10.1556/066.2020.00204
Ohiagu, F. O.; Chikezie, P. C.; Chikezie, C. M.; Enyoh, C. E. Anticancer activity of Nigerian medicinal plants: a review. Future Journal of Pharmaceutical Sciences, 2021, 7(1), 1-21.
DOI: https://doi.org/10.1186/s43094-021-00222-6
Rungruang, R.; Ratanathavorn, W.; Boohuad, N.; Selamassakul, O.; Kaisangsri, N. Antioxidant and anti-aging enzyme activities of bioactive compounds isolated from selected Zingiberaceae plants. Agriculture and Natural Resources, 2021, 55(1), 153-160.
Saidurrahman, M.; Mujahid, M.; Siddiqui, M. A.; Alsuwayt, B.; Rahman, M. A. Evaluation of hepatoprotective activity of ethanolic extract of Pterocarpus marsupium Roxb. leaves against paracetamol-induced liver damage via reduction of oxidative stress. Phytomedicine Plus, 2022, 2(3), 100311.
DOI: https://doi.org/10.1016/j.phyplu.2022.100311
Sevindik, M.; Akgul, H.; Pehlivan, M.; Selamoglu, Z. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen Environ Bull, 2017,26(7), 4757-4763.
Shahrajabian, M. H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini-Reviews in Organic Chemistry, 2022,19(3), 293-318. http://dx.doi.org/10.2174/1570178618666210707161025
DOI: https://doi.org/10.2174/1570178618666210707161025
Baba, H.; Sevindik, M.; Dogan, M.; Akgül, H. Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environmental Bulletin, 2020, 29(09), 7840-7846.
Bal, C.; Sevindik, M.; Akgul, H.; Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma Journal of Engineering and Natural Sciences, 2019, 37(1), 1-5.
DOI: https://doi.org/10.1155/2020/5620484
Selamoglu, Z.; Sevindik, M.; Bal, C.; Ozaltun, B.; Sen, İ.; Pasdaran, A. Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P. Kumm. Biointerface Research in Applied Chemistry, 2020, 10(3), 5500-5506.
DOI: https://doi.org/10.33263/BRIAC103.500506
Mohammed, F. S.; Günal, S.; Pehlivan, M.; Doğan, M.; Sevindik, M.; Akgül, H. Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science, 2020, 33(4), 670-677.
DOI: https://doi.org/10.35378/gujs.707555
Mohammed, F. S.; Kına, E.; Sevindik, M.; Doğan, M.; Pehlivan, M. Antioxidant and antimicrobial activities of ethanol extract of Helianthemum salicifolium (Cistaceae). Indian Journal of Natural Products and Resources (IJNPR) [Formerly Natural Product Radiance (NPR)], 2021, 12(3), 459-462.
Saridogan, B. G. O.; Islek, C.; Baba, H.; Akata, I.; Sevindik, M. Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Environmental Bulletin, 2021, 30(5), 5400-5404.
Eraslan, E. C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma Journal of Engineering and Natural Sciences, 2021, 39(1), 24-28.
Islek, C.; Saridogan, B. G. O.; Sevindik, M.; Akata, I. Biological activities and heavy metal contents of some Pholiota species. Fresenius Environmental Bulletin, 2021, 30(6), 6109-6114.
Rowe, A. M.; Leger, A. S.; Jeon, S.; Dhaliwal, D. K.; Knickelbein, J. E.; Hendricks, R. L. Herpes keratitis. Progress in retinal and eye research, 2013, 32, 88-101.
DOI: https://doi.org/10.1016/j.preteyeres.2012.08.002
Balasubramaniam, R.; Kuperstein, A. S.; Stoopler, E. T. Update on oral herpes virus infections. Dental Clinics, 2014, 58(2), 265-280. http://dx.doi.org/10.1016/j.cden.2013.12.001.
DOI: https://doi.org/10.1016/j.cden.2013.12.001
Katz, J.; Yue, S.; Xue, W. Herpes simplex and Herpes zoster viruses in COVID-19 patients. Irish Journal of Medical Science (1971-), 2022, 191(3), 1093-1097.
DOI: https://doi.org/10.1007/s11845-021-02714-z
Serkedjieva, J.; Manolova, N.; Zgórniak‐Nowosielska, I.; Zawilińska, B.; Grzybek, J. Antiviral activity of the infusion (SHS‐174) from flowers of Sambucus nigra L., aerial parts of Hypericum perforatum L., and roots of Saponaria officinalis L. against influenza and Herpes simplex viruses. Phytotherapy Research,1990, 4(3), 97-100. http://dx.doi.org/10.1002/ptr.2650040305.
DOI: https://doi.org/10.1002/ptr.2650040305
Pacheco, P.; Sierra, J.; Schmeda‐Hirschmann, G.; Potter, C. W.; Jones, B. M.; Moshref, M. Antiviral activity of Chilean medicinal plant extracts. Phytotherapy Research, 1993,7(6), 415-418. http://dx.doi.org/10.1002/ptr.2650070606.
DOI: https://doi.org/10.1002/ptr.2650070606
Vlietinck, A. J.; Van Hoof, L.; Totte, J.; Lasure, A.; Berghe, D. V.; Rwangabo, P. C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. Journal of ethnopharmacology, 1995, 46(1), 31-47.
DOI: https://doi.org/10.1016/0378-8741(95)01226-4
Hamidi, J. A.; Ismaili, N. H.; Ahmadi, F. B.; Lajisi, N. H. Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J. Trop. Agric. Sci, 1996, 19(2/3), 129-136.
Taylor, R. S. L.; Manandhar, N. P.; Hudson, J. B.; Towers, G. H. N. Antiviral activities of Nepalese medicinal plants. Journal of ethnopharmacology, 1996, 52(3), 157-163. http://dx.doi.org/10.1016/0378-8741(96)01409-2.
DOI: https://doi.org/10.1016/0378-8741(96)01409-2
Abad, M. J.; Bermejo, P.; Gonzales, E.; Iglesias, I.; Irurzun, A.; Carrasco, L. Antiviral activity of Bolivian plant extracts. General Pharmacology: The Vascular System, 1999, 32(4), 499-503. http://dx.doi.org/10.1016/s0306-3623(98)00214-6.
DOI: https://doi.org/10.1016/S0306-3623(98)00214-6
Betancur-Galvis, L. A.; Saez, J.; Granados, H.; Salazar, A.; Ossa, J. E. Antitumor and antiviral activity of Colombian medicinal plant extracts. Memórias do Instituto Oswaldo Cruz, 1999, 94, 531-535. http://dx.doi.org/10.1590/S0074-02761999000400019.
DOI: https://doi.org/10.1590/S0074-02761999000400019
Kudi, A. C.; Myint, S. H. Antiviral activity of some Nigerian medicinal plant extracts. Journal of ethnopharmacology, 1999, 68(1-3), 289-294.
DOI: https://doi.org/10.1016/S0378-8741(99)00049-5
Anani, K.; Hudson, J. B.; De Souza, C.; Akpagana, K.; Tower, G. H. N.; Arnason, J. T.; Gbeassor, M. Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharmaceutical Biology, 2000, 38(1), 40-45.
DOI: https://doi.org/10.1076/1388-0209(200001)38:1;1-B;FT040
Hudson, J. B.; Lee, M. K.; Sener, B.; Erdemoglu, N. Antiviral activities in extracts of Turkish medicinal plants. Pharmaceutical biology, 2000,38(3), 171-175. http://dx.doi.org/10.1076/1388-0209(200007)3831-SFT171.
DOI: https://doi.org/10.1076/1388-0209(200007)3831-SFT171
Mouhajir, F.; Hudson, J. B.; Rejdali, M.; Towers, G. H. N. Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical biology, 2001,39(5), 364-374. http://dx.doi.org/10.1076/phbi.39.5.364.5892.
DOI: https://doi.org/10.1076/phbi.39.5.364.5892
Rajbhandari, M.; Wegner, U.; Jülich, M.; Schoepke, T.; Mentel, R. Screening of Nepalese medicinal plants for antiviral activity. Journal of ethnopharmacology, 2001, 74(3), 251-255.
DOI: https://doi.org/10.1016/S0378-8741(00)00374-3
Betancur-Galvis, L. A.; Morales, G. E.; Forero, J. E.; Roldan, J. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Memórias do Instituto Oswaldo Cruz, 2002, 97, 541-546. http://dx.doi.org/10.1590/S0074-02762002000400017.
DOI: https://doi.org/10.1590/S0074-02762002000400017
Montanha, J. A.; Moellerke, P.; Bordignon, S. A.; Schenkel, E. P.; Roehe, P. M. Antiviral activity of Brazilian plant extracts. Acta farmacéutica bonaerense, 2004, 23(2), 183-186.
Vijayan, P.; Raghu, C.; Ashok, G.; Dhanaraj, S. A.; Suresh, B. Antiviral activity of medicinal plants of Nilgiris. Indian Journal of medical research, 2004, 120, 24-29.
Mothana, R. A.; Mentel, R.; Reiss, C.; Lindequist, U. Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra. Phytotherapy Research: an International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2006, 20(4), 298-302. http://dx.doi.org/10.1002/ptr.1858.
DOI: https://doi.org/10.1002/ptr.1858
Monavari, H.; Hamkar, R.; Norooz-Babaei, Z.; Adibi, L.; Noroozi, M.; Ziaei, A. Antiviral effect assay of twenty five species of various medicinal plants families in Iran. Iranian Journal of Medical Microbiology, 2007, 1(2), 49-59.
Loizzo, M. R.; Saab, A. M.; Tundis, R.; Statti, G. A.; Menichini, F.; Lampronti, I.; Doerr, H. W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chemistry & biodiversity, 2008, 5(3), 461-470. http://dx.doi.org/10.1002/cbdv.200890045.
DOI: https://doi.org/10.1002/cbdv.200890045
Caamal-Herrera; I. O., Muñoz-Rodríguez, D.; Madera-Santana, T.; Azamar-Barrios, J. A. Identification of volatile compounds in essential oil and extracts of Ocimum micranthum Willd leaves using GC/MS. International Journal of Applied Research in Natural Products, 2016, 9(1), 31-40.
Alim, A.; Ismihan, G.; Hamdi, M. G.; Bektas, T.; Julia, S. In vitro antimicrobial and antiviral activities of the essential oil and various extracts of Salvia cedronella Boiss. Journal of Medicinal Plants Research, 2009, 3(5), 413-419. http://dx.doi.org/10.5897/JMPR.9000743.
Orhan, I.; Deliorman-Orhan, D.; Özçelik, B. Antiviral activity and cytotoxicity of the lipophilic extracts of various edible plants and their fatty acids. Food chemistry, 2009, 115(2), 701-705. http://dx.doi.org/10.1016/j.foodchem.2009.01.024.
DOI: https://doi.org/10.1016/j.foodchem.2009.01.024
Soltan, M. M.; Zaki, A. K. Antiviral screening of forty-two Egyptian medicinal plants. Journal of ethnopharmacology, 2009, 126(1), 102-107.
DOI: https://doi.org/10.1016/j.jep.2009.08.001
Vimalanathan, S.; Ignacimuthu, S.; Hudson, J. B. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharmaceutical biology, 2009, 47(5), 422-429. http://dx.doi.org/10.1080/13880200902800196.
DOI: https://doi.org/10.1080/13880200902800196
Ahmed, B. B.; Sahar, A. S.; Omar, R. A. Antiviral activity and mode of action of Dianthus caryophyllus L. and Lupinus termes L. seed extracts against in vitro Herpes simplex and hepatitis A viruses infection. Journal of Microbiology and Antimicrobials, 2010, 2(3), 23-29. http://dx.doi.org/10.5897/JMA.9000011.
Brandão, G. C.; Kroon, E. G.; Dos Santos, J. R.; Stehmann, J. R.; Lombardi, J. A.; Braga de Oliveira, A. Antiviral activity of Bignoniaceae species occurring in the State of Minas Gerais (Brazil): part 1. Letters in Applied Microbiology, 2010, 51(4), 469-476. http://dx.doi.org/10.1111/j.1472-765X.2010.02924.x.
DOI: https://doi.org/10.1111/j.1472-765X.2010.02924.x
Bagla, V. P.; McGaw, L. J.; Eloff, J. N. The antiviral activity of six South African plants traditionally used against infections in ethnoveterinary medicine. Veterinary microbiology, 2012, 155(2-4), 198-206. http://dx.doi.org/10.1016/j.vetmic.2011.09.015.
DOI: https://doi.org/10.1016/j.vetmic.2011.09.015
Faral-Tello, P.; Mirazo, S.; Dutra, C.; Pérez, A.; Geis-Asteggiante, L.; Frabasile, S.; Arbiza, J. Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. The Scientific World Journal, 2012, (1), 174837.
DOI: https://doi.org/10.1100/2012/174837
Fernandes, M. J. B.; Barros, A. V.; Melo, M. S.; Simoni, I. C. Screening of Brazilian plants for antiviral activity against animal herpesviruses. J Med Plants Res, 2012, 6, 2261-2265. http://dx.doi.org/10.5897/JMPR10.040.
DOI: https://doi.org/10.5897/JMPR10.040
Tan, W. C.; Jaganath, I. B.; Manikam, R.; Sekaran, S. D. Evaluation of antiviral activities of four local Malaysian Phyllanthus species against Herpes simplex viruses and possible antiviral target. International journal of medical sciences, 2013, 10(13), 1817. http://dx.doi.org/ 10.7150/ijms.6902.
DOI: https://doi.org/10.7150/ijms.6902
Visintini Jaime, M. F.; Redko, F.; Muschietti, L. V.; Campos, R. H.; Martino, V. S.; Cavallaro, L. V. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virology journal, 2013, 10(1), 1-10. http://dx.doi.org/10.1186/1743-422X-10-245.
DOI: https://doi.org/10.1186/1743-422X-10-245
Boligon, A. A.; Piana, M.; Kubiça, T. F.; Mario, D. N.; Dalmolin, T. V.; Bonez, P. C.; Athayde, M. L. HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. Journal of Applied Biomedicine, 2015, 13(1), 7-18. http://dx.doi.org/10.1016/j.jab.2014.01.004.
DOI: https://doi.org/10.1016/j.jab.2014.01.004
Kendir, G.; Köroglu, A.; Özkan, S.; Özgen Özgacar, S.; Karaoglu, T.; Gargari, S. Evaluation of antiviral and antimicrobial activities of Ribes species growing in Turkey. Journal of Biologically Active Products from Nature, 2016, 6(2), 136-149. http://dx.doi.org/10.1080/22311866.2016.1202141.
DOI: https://doi.org/10.1080/22311866.2016.1202141
Sharifi-Rad, J.; Iriti, M.; Setzer, W. N.; Sharifi-Rad, M.; Roointan, A.; Salehi, B. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cellular and Molecular Biology, 2018, 64(8), 11-17. http://dx.doi.org/10.14715/cmb/2018.64.8.2.
DOI: https://doi.org/10.14715/cmb/2018.64.8.2
Kutluk, I.; Aslan, M.; Orhan, I. E.; Özçelik, B. Antibacterial, antifungal and antiviral bioactivities of selected Helichrysum species. South African Journal of Botany, 2018, 119, 252-257.
DOI: https://doi.org/10.1016/j.sajb.2018.09.009
Marina, A. P.; Isabela, C. S.; Veronica, M. H. H.; Maria, J. B. F.; Clarice, W. A.; Juliana, R. B.; Joo, H. G. L. In vitro antiviral activity of Brazilian Cerrado plant extracts against animal and human herpesviruses. Journal of Medicinal Plants Research, 2018, 12(10), 106-115. http://dx.doi.org/ 10.5897/JMPR2018.6567.
DOI: https://doi.org/10.5897/JMPR2018.6567
Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: an updated review. Molecules, 2020, 25(11), 2627. http://dx.doi.org/10.3390/molecules25112627.
DOI: https://doi.org/10.3390/molecules25112627
Lowe, H.; Steele, B.; Bryant, J.; Fouad, E.; Toyang, N.; Ngwa, W. Antiviral activity of Jamaican medicinal plants and isolated bioactive compounds. Molecules, 2021, 26(3), 607. http://dx.doi.org/ 10.3390/molecules26030607.
DOI: https://doi.org/10.3390/molecules26030607
Douek, D. C.; Roederer, M.; Koup, R. A. Emerging concepts in the immunopathogenesis of AIDS. Annual review of medicine, 2009, 60, 471. http://dx.doi.org/10.1146/annurev.med.60.041807.123549.
DOI: https://doi.org/10.1146/annurev.med.60.041807.123549
Powell, M. K.; Benková, K.; Selinger, P.; Dogoši, M.; Kinkorová Luňáčková, I.; Koutníková, H.; Heneberg, P. Opportunistic infections in HIV-infected patients differ strongly in frequencies and spectra between patients with low CD4+ cell counts examined postmortem and compensated patients examined antemortem irrespective of the HAART era. PLoS One, 2016, 11(9), e0162704.
DOI: https://doi.org/10.1371/journal.pone.0162704
Sharp, P. M.; Hahn, B. H. The evolution of HIV-1 and the origin of AIDS. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1552), 2487-2494.
DOI: https://doi.org/10.1098/rstb.2010.0031
Board, N. L.; Moskovljevic, M.; Wu, F.; Siliciano, R. F.; Siliciano, J. D. Engaging innate immunity in HIV-1 cure strategies. Nature Reviews Immunology, 2022, 22(8), 499-512. http://dx.doi.org/s41577-021-00649-1.
DOI: https://doi.org/10.1038/s41577-021-00649-1
Locher, C. P.; Witvrouw, M.; De Béthune, M. P.; Burch, M. T.; Mower, H. F.; Davis, H.; Vlietinck, A. J. Antiviral activity of Hawaiian medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine, 1996, 2(3), 259-264.
DOI: https://doi.org/10.1016/S0944-7113(96)80052-3
Cos, P.; Hermans, N.; De Bruyne, T.; Apers, S.; Sindambiwe, J. B.; Witvrouw, M.; Vlietinck, A. J. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine, 2002, 9(1), 62-68. http://dx.doi.org/10.1078/0944-7113-00083.
DOI: https://doi.org/10.1078/0944-7113-00083
Kotwal, G. J.; Kaczmarek, J. N.; Leivers, S.; Ghebremariam, Y. T.; Kulkarni, A. P.; Bauer, G.; Mohamed, A. R. Anti‐HIV, Anti‐Poxvirus, and Anti‐SARS Activity of a Nontoxic, Acidic Plant Extract from the Trifollium Species Secomet‐V/anti‐Vac Suggests That It Contains a Novel Broad‐Spectrum Antiviral. Annals of the New York Academy of Sciences, 2005, 1056(1), 293-302. http://dx.doi.org/10.1196/annals.1352.014.
DOI: https://doi.org/10.1196/annals.1352.014
Jayakumar, T.; Hsieh, C. Y.; Lee, J. J.; Sheu, J. R. Experimental and Clinical Pharmacology of Andrographis paniculata and its Major Bioactive Phytoconstituent Andrographolide. Evid. Based Complement. Alternat Med., 2013, 5, 846740.
DOI: https://doi.org/10.1155/2013/846740
Mukherjee, H.; Ojha, D.; Bag, P.; Chandel, H. S.; Bhattacharyya, S.; Chatterjee, T.K. Anti-herpes Virus Activities of Achyranthes aspera: an Indian Ethnomedicine, and its Triterpene Acid. Microbiol. Res., 2013, 168, 238–244.
DOI: https://doi.org/10.1016/j.micres.2012.11.002
Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Donis, R. O. New world bats harbor diverse influenza A viruses. PLoS pathogens, 2013, 9(10), e1003657. http://dx.doi.org/10.1371/journal.ppat.1003657.
DOI: https://doi.org/10.1371/journal.ppat.1003657
Dadonaite, B.; Vijayakrishnan, S.; Fodor, E.; Bhella, D.; Hutchinson, E. C. Filamentous influenza viruses. The Journal of general virology, 2016, 97(8), 1755. http://dx.doi.org/10.1099/jgv.0.000535.
DOI: https://doi.org/10.1099/jgv.0.000535
Smith, D. J.; Lapedes, A. S.; De Jong, J. C.; Bestebroer, T. M.; Rimmelzwaan, G. F.; Osterhaus, A. D.; Fouchier, R. A. Mapping the antigenic and genetic evolution of influenza virus. Science, 2004, 305(5682), 371-376.
DOI: https://doi.org/10.1126/science.1097211
Henrickson, K. J. Parainfluenza viruses. Clinical microbiology reviews, 2003, 16(2), 242-264. http://dx.doi.org/10.1128/CMR.16.2.242-264.2003.
DOI: https://doi.org/10.1128/CMR.16.2.242-264.2003
Tkachenko, K. G. Antiviral activity of the essential oils of some Heracleum L. species. Journal of herbs, spices & medicinal plants, 2007, 12(3), 1-12. http://dx.doi.org/10.1300/J044v12n0301.
DOI: https://doi.org/10.1300/J044v12n03_01
Nikolaeva-Glomb, L.; Mukova, L.; Nikolova, N.; Badjakov, I.; Dincheva, I.; Kondakova, V.; Galabov, A. S. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo-and Paramyxoviridae. Natural product communications, 2014, 9(1), 51-54. http://dx.doi.org/10.1177/1934578X1400900116.
DOI: https://doi.org/10.1177/1934578X1400900116
Parhira, S.; Yang, Z. F.; Zhu, G. Y.; Chen, Q. L.; Zhou, B. X.; Wang, Y. T.; Jiang, Z. H. In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantea. PloS one, 2014, 9(8), e104544. http://dx.doi.org/10.1371/journal.pone.0104544.
DOI: https://doi.org/10.1371/journal.pone.0104544
Fatima, M.; Sadaf Zaidi, N. U. S.; Amraiz, D.; Afzal, F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. Journal of Microbiology and Biotechnology, 2016, 26(1), 151-159.
DOI: https://doi.org/10.4014/jmb.1508.08024
Dorra, N.; El-Berrawy, M.; Sallam, S.; Mahmoud, R. Evaluation of antiviral and antioxidant activity of selected herbal extracts. Journal of High Institute of Public Health, 2019, 49(1), 36-40. http://dx.doi.org/10.21608/JHIPH.2019.29464.
DOI: https://doi.org/10.21608/jhiph.2019.29464
Abou Baker, D. H.; Amarowicz, R.; Kandeil, A.; Ali, M. A.; Ibrahim, E. A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. Journal of Agriculture and Food Research, 2021, 4, 100135. http://dx.doi.org/10.1016/j.jafr.2021.100135.
DOI: https://doi.org/10.1016/j.jafr.2021.100135
Thompson, K. M.; Kalkowska, D. A.; Badizadegan, K. Hypothetical emergence of poliovirus in 2020: part 1. Consequences of policy decisions to respond using nonpharmaceutical interventions. Expert Review of Vaccines, 2021, 20(4), 465-481. http://dx.doi.org/10.1080/14760584.2021.1891888.
DOI: https://doi.org/10.1080/14760584.2021.1891888
Russo, G. B.; Goyal, T.; Tyler, K.; Thakur, K. T. Re‐Emergence of Poliovirus in the United States: Considerations and Implications. Annals of neurology, 2022, 92(5), 725-728. http://dx.doi.org/10.1002/ana.26504.
DOI: https://doi.org/10.1002/ana.26504
Lévêque, N.; Semler, B. L. A. 21st century perspective of poliovirus replication. PLoS pathogens, 2015, 11(6), e1004825. http://dx.doi.org/10.1371/journal.ppat.1004825.
DOI: https://doi.org/10.1371/journal.ppat.1004825
Mohamed, I. E. T.; El Nur, E. B. E. S.; Abdelrahman, M. E. N. The antibacterial, antiviral activities and phytochemical screening of some Sudanese medicinal plants. EurAsian Journal of BioSciences, 2010, 4, 8-16. http://dx.doi.org/10.5053/ejobios.2010.4.0.2.
DOI: https://doi.org/10.5053/ejobios.2010.4.0.2
Bertol, J. W.; Santos, P. R.; Rodrigues, J.; Cortez, D. A.; D Filho, B. P.; Nakamura, C. V.; Ueda-Nakamura, T. Antiviral activity of fractions from leaves of Piper regnelli var. pallescens. Revista Brasileira de Farmacognosia, 2012, 22, 1290-1294. http://dx.doi.org/10.1590/S0102-695X2012005000110.
DOI: https://doi.org/10.1590/S0102-695X2012005000110
Cortez, V.; Meliopoulos, V. A.; Karlsson, E. A.; Hargest, V.; Johnson, C.; Schultz-Cherry, S. Astrovirus biology and pathogenesis. Annual review of virology, 2017, 4, 327-348. http://dx.doi.org/10.1146/annurev-virology-101416-041742.
DOI: https://doi.org/10.1146/annurev-virology-101416-041742
Wohlgemuth, N.; Honce, R.; Schultz-Cherry, S. Astrovirus evolution and emergence. Infection, genetics and Evolution, 2019,69, 30-37. http://dx.doi.org/10.1016/j.meegid.2019.01.009.
DOI: https://doi.org/10.1016/j.meegid.2019.01.009
Ornoy, A.; Ergaz, Z. Parvovirus B19 infection during pregnancy and risks to the fetus. Birth defects research, 2017, 109(5), 311-323. http://dx.doi.org/10.1002/bdra.23588.
DOI: https://doi.org/10.1002/bdra.23588
Adouchief, S.; Smura, T.; Sane, J.; Vapalahti, O.; Kurkela, S. Sindbis virus as a human pathogen—epidemiology, clinical picture and pathogenesis. Reviews in Medical Virology, 2016, 26(4), 221-241. http://dx.doi.org/10.1002/rmv.1876.
DOI: https://doi.org/10.1002/rmv.1876
Fumian, T. M.; Tuipulotu, D. E.; Netzler, N. E.; Lun, J. H.; Russo, A. G.; Yan, G. J.; White, P. A. Potential therapeutic agents for feline calicivirus infection. Viruses, 2018, 10(8), 433. http://dx.doi.org/10.3390/v10080433.
DOI: https://doi.org/10.3390/v10080433
Duque-Soto, C.; Borrás-Linares, I.; Quirantes-Piné, R.; Falcó, I.; Sánchez, G.; Segura-Carretero, A.; Lozano-Sánchez, J. Potential antioxidant and antiviral activities of hydroethanolic extracts of selected Lamiaceae species. Foods, 2022, 11(13), 1862. http://dx.doi.org/10.3390/foods11131862.
DOI: https://doi.org/10.3390/foods11131862
Blaas, D.; Fuchs, R. Mechanism of human rhinovirus infections. Molecular and cellular pediatrics, 2016, 3(1), 1-4. http://dx.doi.org/10.1186/s40348-016-0049-3.
DOI: https://doi.org/10.1186/s40348-016-0049-3
To, K. K.; Yip, C. C.; Yuen, K. Y. Rhinovirus–from bench to bedside. Journal of the Formosan Medical Association, 2017, 116(7), 496-504. http://dx.doi.org/10.1016/j.jfma.2017.04.009.
DOI: https://doi.org/10.1016/j.jfma.2017.04.009
Choi, H. J.; Lim, C. H.; Song, J. H.; Baek, S. H.; Kwon, D. H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine, 2009, 16(1), 35-39. http://dx.doi.org/10.1016/j.phymed.2008.10.012.
DOI: https://doi.org/10.1016/j.phymed.2008.10.012
Choi, H. J. Evaluation of antiviral activity of Zanthoxylum species against picornaviruses. Osong Public Health and Research Perspectives, 2016, 7(6), 400-403. http://dx.doi.org/10.1016/j.phrp.2016.11.003.
DOI: https://doi.org/10.1016/j.phrp.2016.11.003
Myllynen, M.; Kazmertsuk, A.; Marjomäki, V. A novel open and infectious form of echovirus 1. Journal of Virology, 2016, 90(15), 6759-6770. http://dx.doi.org/10.1128/JVI.00342-16.
DOI: https://doi.org/10.1128/JVI.00342-16
Broberg, E. K.; Simone, B.; Jansa, J. Upsurge in echovirus 30 detections in five EU/EEA countries, April to September, 2018. Eurosurveillance, 2018, 23(44), 1800537. http://dx.doi.org/10.2807/1560-7917.ES.2018.23.44.1800537.
DOI: https://doi.org/10.2807/1560-7917.ES.2018.23.44.1800537
Ogbole, O. O.; Akinleye, T. E.; Segun, P. A.; Faleye, T. C.; Adeniji, A. J. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virology journal, 2018, 15(1), 1-8. http://dx.doi.org/10.1186/s12985-018-1022-7.
DOI: https://doi.org/10.1186/s12985-018-1022-7
Crawford, S. E.; Ramani, S.; Tate, J. E.; Parashar, U. D.; Svensson, L.; Hagbom, M.; Estes, M. K. Rotavirus infection. Nature Reviews Disease Primers, 2017, 3(1), 1-16. http://dx.doi.org/10.1038/nrdp.2017.83.
DOI: https://doi.org/10.1038/nrdp.2017.83
Esona, M. D., Gautam, R. Rotavirus. Clinics in laboratory medicine, 2015, 35(2), 363-391. http://dx.doi.org/10.1016/j.cll.2015.02.012.
DOI: https://doi.org/10.1016/j.cll.2015.02.012
Cecílio, A. B.; de Faria, D. B.; de Carvalho Oliveira, P.; Caldas, S.; de Oliveira, D. A.; Sobral, M. E. G.; de Almeida, V. L. Screening of Brazilian medicinal plants for antiviral activity against rotavirus. Journal of ethnopharmacology, 2012, 141(3), 975-981. http://dx.doi.org/10.1016/j.jep.2012.03.031.
DOI: https://doi.org/10.1016/j.jep.2012.03.031
Petrini, S.; Iscaro, C.; Righi, C. Antibody responses to bovine alphaherpesvirus 1 (BoHV-1) in passively immunized calves. Viruses, 2019, 11(1), 23. http://dx.doi.org/10.3390/v11010023.
DOI: https://doi.org/10.3390/v11010023
Ries, A. S.; Cargnelutti, J. F.; Basso, G.; Acunha, T. V.; Iglesias, B. A.; Flores, E. F.; Weiblen, R. Water-soluble tetra-cationic porphyrins display virucidal activity against Bovine adenovirus and Bovine alphaherpesvirus 1. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101947.
DOI: https://doi.org/10.1016/j.pdpdt.2020.101947
Simoni, I. C.; Manha, A. P.; Sciessere, L.; Hoe, V. M.; Takinami, V. H.; Fernandes, M. J. B. Evaluation of the antiviral activity of Brazilian cerrado plants against animal viruses. Virus Reviews & Research, 2007, 12(1-2), 5.
DOI: https://doi.org/10.17525/vrr.v12i1-2.13
Müller, L.; Berkeley, R.; Barr, T.; Ilett, E.; Errington-Mais, F. Past, present and future of oncolytic reovirus. Cancers, 2020, 12(11), 3219. http://dx.doi.org/10.3390/cancers12113219.
DOI: https://doi.org/10.3390/cancers12113219
Albarnaz, J. D.; Torres, A. A.; Smith, G. L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses, 2018, 10(3), 101. http://dx.doi.org/10.3390/v10030101.
DOI: https://doi.org/10.3390/v10030101
Wei, P. H.; Wu, S. Z.; Mu, X. M.; Xu, B.; Su, Q. J.; Wei, J. L.; Xie, Z. C. Effect of alcohol extract of Acanthus ilicifolius L. on anti-duck hepatitis B virus and protection of liver. Journal of ethnopharmacology, 2015, 160, 1-5. http://dx.doi.org/10.1016/j.jep.2014.10.050.
DOI: https://doi.org/10.1016/j.jep.2014.10.050
Sin, J.; Mangale, V.; Thienphrapa, W.; Gottlieb, R. A.; Feuer, R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology, 2015, 484, 288-304.
DOI: https://doi.org/10.1016/j.virol.2015.06.006
Qian, Q.; Zhou, H.; Shu, T.; Mu, J.; Fang, Y.; Xu, J.; Zhou, X. The capsid protein of Semliki Forest virus antagonizes RNA interference in mammalian cells. Journal of Virology, 2020, 94(3), e01233-19. http://dx.doi.org/10.1128/JVI.01233-19.
DOI: https://doi.org/10.1128/JVI.01233-19
Aref, S.; Bailey, K.; Fielding, A. Measles to the rescue: a review of oncolytic measles virus. Viruses, 2016, 8(10), 294. http://dx.doi.org/10.3390/v8100294.
DOI: https://doi.org/10.3390/v8100294
Mina, M. J.; Kula, T.; Leng, Y.; Li, M.; De Vries, R. D.; Knip, M.; Elledge, S. J. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366(6465), 599-606. http://dx.doi.org/10.1126/science.aay6485.
DOI: https://doi.org/10.1126/science.aay6485
Laksono, B. M.; de Vries, R. D.; Duprex, W. P.; de Swart, R. L. Measles pathogenesis, immune suppression and animal models. Current Opinion in Virology, 2020, 41, 31-37.
DOI: https://doi.org/10.1016/j.coviro.2020.03.002
Burman, B.; Pesci, G.; Zamarin, D. Newcastle disease virus at the forefront of cancer immunotherapy. Cancers, 2020, 12(12), 3552. http://dx.doi.org/10.3390/cancers12123552.
DOI: https://doi.org/10.3390/cancers12123552
Brown, V. R.; Bevins, S. N. A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. Veterinary research, 2017, 48(1), 1-15. http://dx.doi.org/10.1186/s13567-017-0475-9.
DOI: https://doi.org/10.1186/s13567-017-0475-9
Bakari, G. G.; Max, R. A.; Mdegela, R. H.; Phiri, E. C.; Mtambo, M. Antiviral activity of crude extracts from Commiphora swynnertonii against Newcastle disease virus in ovo. Tropical animal health and production, 2012, 44(7), 1389-1393. http://dx.doi.org/10.1007/s11250-012-0076-6.
DOI: https://doi.org/10.1007/s11250-012-0076-6
Woo, P. C.; Huang, Y.; Lau, S. K.; Yuen, K. Y. Coronavirus genomics and bioinformatics analysis. Viruses, 2010, 2(8), 1804-1820. http://dx.doi.org/10.3390/v2081803.
DOI: https://doi.org/10.3390/v2081803
Liu, D. X.; Liang, J. Q.; Fung, T. S. Human coronavirus-229E,-OC43,-NL63, and-HKU1 (Coronaviridae). Encyclopedia of virology, 2021, 428. http://dx.doi.org/10.1016/B978-0-12-809633-8.21501-X.
DOI: https://doi.org/10.1016/B978-0-12-809633-8.21501-X
Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021, 19(3), 141-154.
DOI: https://doi.org/10.1038/s41579-020-00459-7
Perlman, S. Another decade, another coronavirus. New England Journal of Medicine, 2020, 382(8), 760-762. http://dx.doi.org/10.1056/NEJMe2001126.
DOI: https://doi.org/10.1056/NEJMe2001126
Lau, K. M.; Lee, K. M.; Koon, C. M.; Cheung, C. S. F.; Lau, C. P.; Ho, H. M.; Fung, K. P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of ethnopharmacology, 2008, 118(1), 79-85.
DOI: https://doi.org/10.1016/j.jep.2008.03.018
Das, M.; Banerji, A.; Cheemalapati, V. N.; Hazra, J. Antiviral Activity Of Indian Medicinal Plants: Prventive Measures For COVID-19. Journal of Global Biosciences, 2020, 9(5), 7307-7319.
Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 2020, 25(8), 1876. http://dx.doi.org/10.3390/molecules25081876.
DOI: https://doi.org/10.3390/molecules25081876
Pandit, M.; Latha, N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Research Square, 2020, 1-31. http://dx.doi.org/10.21203/rs.3.rs-22687/v1
DOI: https://doi.org/10.21203/rs.3.rs-22687/v1
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. Journal of Molecular Structure, 2021, 1229, 129489.
DOI: https://doi.org/10.1016/j.molstruc.2020.129489
Maharjan, P. M.; Cheon, J.; Jung, J.; Kim, H.; Lee, J.; Song, M.; Choe, S. Plant-expressed receptor binding domain of the SARS-CoV-2 spike protein elicits Humoral immunity in mice. Vaccines, 2021, 9(9), 978. http://dx.doi.org/10.3390/vaccines9090978.
DOI: https://doi.org/10.3390/vaccines9090978
Bachar, S. C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Frontiers in Pharmacology, 2021, 12, 1-20. http://dx.doi.org/10.3389/fphar.2021.732891.
DOI: https://doi.org/10.3389/fphar.2021.732891
Mahmud, M. S.; Hossain, M. S.; Ahmed, A. F.; Islam, M. Z.; Sarker, M. E.; Islam, M. R. Antimicrobial and antiviral (SARS-CoV-2) potential of cannabinoids and Cannabis sativa: A comprehensive review. Molecules, 2021, 26(23), 7216. http://dx.doi.org/10.3390/molecules26237216.
DOI: https://doi.org/10.3390/molecules26237216
Imieje, V. O.; Zaki, A. A.; Metwaly, A. M.; Mostafa, A. E.; Elkaeed, E. B.; Falodun, A. Comprehensive In Silico Screening of the Antiviral Potentialities of a New Humulene Glucoside from Asteriscus hierochunticus against SARS-CoV-2. Journal of Chemistry, 2021, http://dx.doi.org/10.1155/2021/5541876.
DOI: https://doi.org/10.1155/2021/5541876
Al-Karmalawy, A. A.; Farid, M. M.; Mostafa, A.; Ragheb, A. Y.; H. Mahmoud, S.; Shehata, M.; Marzouk, M. M. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules, 2021, 26(21), 6559. http://dx.doi.org/10.3390/molecules26216559.
DOI: https://doi.org/10.3390/molecules26216559
Nivetha, R.; Bhuvaragavan, S.; Muthu Kumar, T.; Ramanathan, K.; Janarthanan, S. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. Journal of Biomolecular Structure and Dynamics, 2021, 1-12. http://dx.doi.org/10.1080/07391102.2021.1955009.
DOI: https://doi.org/10.21203/rs.3.rs-31134/v1
Fallah, M. S.; Bayati, M.; Najafi, A.; Behmard, E.; Davarpanah, S. J. Molecular docking investigation of antiviral herbal compounds as potential inhibitors of SARS-CoV-2 spike receptor. Biointerface Research in Applied Chemistry, 2021, 11(5), 12916-12924.
DOI: https://doi.org/10.33263/BRIAC115.1291612924
Zannella, C.; Giugliano, R.; Chianese, A.; Buonocore, C.; Vitale, G. A.; Sanna, G.; Franci, G. Antiviral activity of Vitis vinifera leaf extract against SARS-CoV-2 and HSV-1. Viruses, 2021, 13(7), 1263. http://dx.doi.org/10.3390/v13071263.
DOI: https://doi.org/10.3390/v13071263
Rehman, M. F. U.; Akhter, S.; Batool, A. I.; Selamoglu, Z.; Sevindik, M.; Eman, R.; Aslam, M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics, 2021, 10(8), 1011. http://dx.doi.org/10.3390/antibiotics10081011.
DOI: https://doi.org/10.3390/antibiotics10081011
Pattaro-Júnior, J. R.; Araújo, I. G.; Moraes, C. B.; Barbosa, C. G.; Philippsen, G. S.; Freitas-Junior, L. H.; Seixas, F. A. V. Antiviral activity of Cenostigma pluviosum var. peltophoroides extract and fractions against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics,2022, 1-12. http://dx.doi.org/10.1080/07391102.2022.2120078.
DOI: https://doi.org/10.1080/07391102.2022.2120078
Leka, K.; Hamann, C.; Desdemoustier, P.; Frédérich, M.; Garigliany, M. M.; Ledoux, A. In vitro antiviral activity against SARS‐CoV‐2 of common herbal medicinal extracts and their bioactive compounds. Phytotherapy Research, 2022, 36(8), 3013–3015. http://dx.doi.org/10.1002/ptr.7463.
DOI: https://doi.org/10.1002/ptr.7463
Chiamenti, L.; Silva, F. P. D.; Schallemberger, K.; Demoliner, M.; Rigotto, C.; Fleck, J. D. Cytotoxicity and antiviral activity evaluation of Cymbopogon spp hydroethanolic extracts. Brazilian Journal of Pharmaceutical Sciences, 2019, 55. http://dx.doi.org/10.1590/s2175-97902019000118063.
DOI: https://doi.org/10.1590/s2175-97902019000118063
Amber, R.; Adnan, M.; Tariq, A.; Mussarat, S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. Journal of pharmacy and pharmacology, 2017, 69(2), 109-122. http://dx.doi.org/10.1111/jphp.12669.
DOI: https://doi.org/10.1111/jphp.12669
Costa, V. G. D.; Saivish, M. V.; Rodrigues, R. L.; Lima Silva, R. F. D.; Moreli, M. L.; Krüger, R. H. Molecular and serological surveys of canine distemper virus: A meta-analysis of cross-sectional studies. PloS one, 2019, 14(5), e0217594. http://dx.doi.org/10.1371/journal.pone.0217594.
DOI: https://doi.org/10.1371/journal.pone.0217594
Mulatu, E.; Feyisa, A. Review: Lumpy skin disease. J. Vet. Sci. Technol., 2018, 9(535), 1-8. http://dx.doi.org/10.4172/2157-7579.1000535.
DOI: https://doi.org/10.4172/2157-7579.1000535
Gupta, T.; Patial, V.; Bali, D.; Angaria, S.; Sharma, M.; Chahota, R. A review: Lumpy skin disease and its emergence in India. Veterinary research communications, 2020, 44(3), 111-118.
DOI: https://doi.org/10.1007/s11259-020-09780-1
Yi, E. J.; Shin, Y. J.; Kim, J. H.; Kim, T. G.; Chang, S. Y. Enterovirus 71 infection and vaccines. Clinical and experimental vaccine research, 2017, 6(1), 4-14. http://dx.doi.org/10.7774/cevr.2017.6.1.4.
DOI: https://doi.org/10.7774/cevr.2017.6.1.4
Lin, J. Y.; Kung, Y. A.; Shih, S. R. Antivirals and vaccines for Enterovirus A71. Journal of biomedical science, 2019, 26(1), 1-10.
DOI: https://doi.org/10.1186/s12929-019-0560-7
Chen, B. S.; Lee, H. C.; Lee, K. M.; Gong, Y. N.; Shih, S. R. Enterovirus and encephalitis. Frontiers in microbiology, 2020, 11, 261. http://dx.doi.org/10.3389/fmicb.2020.00261.
DOI: https://doi.org/10.3389/fmicb.2020.00261
Panda, S. K.; Padhi, L.; Leyssen, P.; Liu, M.; Neyts, J.; Luyten, W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in pharmacology, 2017, 8, 658. http://dx.doi.org/10.3389/fphar.2017.00658.
DOI: https://doi.org/10.3389/fphar.2017.00658
Lingala, S.; Ghany, M. G. Natural history of hepatitis C. Gastroenterology Clinics, 2015, 44(4), 717-734.
DOI: https://doi.org/10.1016/j.gtc.2015.07.003
Thomas, D. L. Global elimination of chronic hepatitis. New England Journal of Medicine, 2019, 380(21), 2041-2050. http://dx.doi.org/10.1056/NEJMra1810477.
DOI: https://doi.org/10.1056/NEJMra1810477
Langer, B. C. A.; Frösner, G. G.; Von Brunn, A. Epidemiological study of viral hepatitis types A, B, C, D and E among Inuits in West Greenland. Journal of viral hepatitis, 1997, 4(5), 339-349. http://dx.doi.org/10.1046/j.1365-2893.1997.00063.x.
DOI: https://doi.org/10.1046/j.1365-2893.1997.00063.x
Basra, S.; Anand, B. S. Definition, epidemiology and magnitude of alcoholic hepatitis. World journal of hepatology, 2011, 3(5), 108. http://dx.doi.org/10.4254/wjh.v3.i5.108.
DOI: https://doi.org/10.4254/wjh.v3.i5.108
Alter, J.; Mast, E. E. The epidemiology of viral hepatitis in the United States. Gastroenterology Clinics of North America, 1994, 23(3), 437-455. http://dx.doi.org/10.1016/S0889-8553(21)00146-1.
DOI: https://doi.org/10.1016/S0889-8553(21)00146-1
Thomas, D. L.; Seeff, L. B. Natural history of hepatitis C. Clinics in liver disease, 2005, 9(3), 383-398. http://dx.doi.org/10.1016/j.cld.2005.05.003.
DOI: https://doi.org/10.1016/j.cld.2005.05.003
Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. Autoimmmune hepatitis. Cellular & molecular immunology, 2022, 19(2), 158-176. http://dx.doi.org/s41423-021-00768-8.
DOI: https://doi.org/10.1038/s41423-021-00768-8
Li, H.; Zhou, C.; Zhou, L.; Chen, Z.; Yang, L.; Bai, H.; Zhao, Y. In vitro antiviral activity of three enantiomeric sesquiterpene lactones from Senecio species against hepatitis B virus. Antiviral Chemistry and Chemotherapy, 2005, 16(4), 277-282.
DOI: https://doi.org/10.1177/095632020501600407
Lee, S. J.; Lee, H. K.; Jung, M. K.; Mar, W. In vitro antiviral activity of 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose against hepatitis B virus. Biological and Pharmaceutical Bulletin, 2006, 29(10), 2131-2134. http://dx.doi.org/10.1248/bpb.29.2131.
DOI: https://doi.org/10.1248/bpb.29.2131
Rehman, S.; Ashfaq, U. A.; Riaz, S.; Javed, T.; Riazuddin, S. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells. Virology journal, 2011, 8(1), 1-6.
DOI: https://doi.org/10.1186/1743-422X-8-220
Wahyuni, T. S.; Tumewu, L.; Permanasari, A. A.; Apriani, E.; Adianti, M.; Rahman, A.; Hotta, H. Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus. Virology journal, 2013, 10(1), 1-9. http://dx.doi.org/10.1186/1743-422X-10-259.
DOI: https://doi.org/10.1186/1743-422X-10-259
Wei, N.; Xiong, J.; Ma, J.; Ye, J.; Si, Y.; Cao, S. Development of efficient, sensitive, and specific detection method for Encephalomyocarditis virus based on CRISPR/Cas13a. Journal of Virological Methods, 2022, 309, 114592. http://dx.doi.org/10.1016/j.jviromet.2022.114592.
DOI: https://doi.org/10.1016/j.jviromet.2022.114592
Arbab, A. H.; Parvez, M. K.; Al Dosari, M. S.; Al Rehaily, A. J. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Experimental and therapeutic medicine, 2017, 14(1), 626-634. http://dx.doi.org/10.3892/etm.2017.4530.
DOI: https://doi.org/10.3892/etm.2017.4530