Webster, J.; Weber, R. Introduction to Fungi, 3rd ed.; Cambridge University Press: UK, 2007; pp. 1-39.
DOI: https://doi.org/10.1017/CBO9780511809026
Ildız, E.; Canpolat, Ş.; İşlek, C.; Canpolat, E.Y.; İşlek, Y.; Akata, I. Bjerkandera adusta collected from Niğde: analysis of total phenolic compound, antioxidant, and antimicrobial properties. Turkish JAF Sci. Tech. 2022, 10, 2996-3000. DOI: 10.24925/turjaf.v10isp2.2996-3000.5750
DOI: https://doi.org/10.24925/turjaf.v10isp2.2996-3000.5750
Kosanic, M.; Petrović, N.; Milosevic-Djordjevic, O.; Grujičić, D.; Tubic, J.; Marković, A.; Stanojkovic, T.P. The health promoting effects of the fruiting bodies extract of the peppery milk cap mushroom Lactarius piperatus (Agaricomycetes) from Serbia. Int. J. Med. Mushrooms 2020, 22(4), 347–357. DOI: 10.1615/IntJMedMushrooms.2020034167
DOI: https://doi.org/10.1615/IntJMedMushrooms.2020034167
Barros, L.; Venturini, B.A.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J. Agric. Food Chem. 2008, 56(10), 3856-3862. DOI: 10.1021/jf8003114
DOI: https://doi.org/10.1021/jf8003114
Kumar, K.; Mehra, R.; Guiné, R.P.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods 2021, 10(12), 2996-3006. DOI: 10.3390/foods10122996
DOI: https://doi.org/10.3390/foods10122996
Yim, H.S.; Chye, F.Y.; Tan, C.T.; Ng, Y.C.; Ho, C.W. Antioxidant activities and total phenolic content of aqueous extract of Pleurotus ostreatus (cultivated oyster mushroom). Malays. J. Nutr. 2010, 16(2), 281-291.
Fu, H.Y.; Shieh, D.E.; Ho, C.T. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 2002, 9(1), 35-43. DOI: 10.1111/j.1745-4522.2002.tb00206.x
DOI: https://doi.org/10.1111/j.1745-4522.2002.tb00206.x
Rustan, A.C. and Drevon, C.A. Fatty acids: structures and properties. Proc. Natl. Acad. Sci. 2012, 109(16), 6241–6246. DOI: 10.1038/npg.els.0003894
DOI: https://doi.org/10.1038/npg.els.0003894
Sevindik, M.; Akgül, H.; Bal, C. Determination of oxidative stress status of Ompholatus olearius gathered from Adana and Antalya provinces in Turkey. SAUJS 2017, 21(3), 324-327. DOI: 10.16984/saufenbilder.298974
DOI: https://doi.org/10.16984/saufenbilder.09547
Bal, C.; Akgul, H.; Sevindik, M.; Akata, I.; Yumrutas, O. Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ. Bull. 2017, 26(10), 6246-6252.
Breitenbach, J.; Kränzlin, F. Fungi of Switzerland,2nd ed.; Verlag Mykologia: Lucerna, Switzerland, 1986.
Cannon, P.F. and Kirk, P.M. Fungal Families of the World, 1st ed.; CABI: Netherland, 2007.
DOI: https://doi.org/10.1079/9780851998275.0000
Hansen, L. and Knudsen, H. Nordic Macromycetes: Polyporales, Boletales, Agaricales, Russulales, Nordsvamp: Copenhagen, 1992.
Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B.; List, F.B.C.A.; Bolchacova, E. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 2012, 109(16), 6241-6246. DOI: 10.1073/pnas.1117018109
DOI: https://doi.org/10.1073/pnas.1207508109
White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., Eds., Academic Press: New York, 1990, 18(1), 315-322.
DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Singleton, V.L.; R, O.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152-178. DOI: 10.1016/S0076-6879(99)99017-1
DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40(6), 945-948. DOI: doi.org/10.1021/jf00018a005
DOI: https://doi.org/10.1021/jf00018a005
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181(4617), 1199-1200. DOI: 10.1038/1811199a0
DOI: https://doi.org/10.1038/1811199a0
Cam, M.; Basyigit, B.; Alasalvar, H.; Yilmaztekin, M.; Ahhmed, A.; Sagdic, O.; Konca, Y.; Telci, I. Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes. Food Biosci. 2020, 35, Art. No: 100577. DOI: 10.1016/j.fbio.2020.100577
DOI: https://doi.org/10.1016/j.fbio.2020.100577
Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1(1), 60-69. DOI: 10.1002/fft2.10
DOI: https://doi.org/10.1002/fft2.10
Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.-M.; Madani, K.; Mesnil, M.; Monvoisin, A. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212-220. DOI: 10.1016/j.foodchem.2015.12.026
DOI: https://doi.org/10.1016/j.foodchem.2015.12.026
Düşgün, C.; Kankılıç, T.; İşlek, C.; Balı, D.F.; Kankılıç, Ö. Antioxidant and cytotoxic potential of local endemic plant Pastinaca zozimoides Fenzl. Turkish JAF Sci. Tech. 2021, 9(4), 646-649. DOI: 10.24925/turjaf.v9i4.646-649.3715
DOI: https://doi.org/10.24925/turjaf.v9i4.646-649.3715
Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57(5/6), 292-304 DOI: 10.1080/09637480600798132.
DOI: https://doi.org/10.1080/09637480600798132
Canpolat, Ş. and Canpolat, E.Y. Antioxidant and Antimicrobial Activity of a Medicinal Mushroom, Ganoderma lucidum. J. Adv. Biol. Biotechnol. 2023, 26(11), 60-67. DOI: 10.9734/jabb/2023/v26i11667
DOI: https://doi.org/10.9734/jabb/2023/v26i11667
Erbiai, E.H.; Bouchra, B.; da Silva, L.P.; Lamrani, Z.; Pinto, E.; da Silva, J.C.E.; Maouni, A. Chemical composition and antioxidant and antimicrobial activities of Lactarius sanguifluus, a wild edible mushroom from northern Morocco. Euro-Mediterr. J. Environ. Integr. 2021, 6, 1-12. DOI:10.1007/s41207-021-00247-6
DOI: https://doi.org/10.1007/s41207-021-00247-6
Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378-385.DOI: 10.1016/j.fct.2013.01.010
DOI: https://doi.org/10.1016/j.fct.2013.01.010
Sharma, S.; Atri, N.S.; Kaur, M.; Verma, B. Nutritional and neutraceutical potential of some wild edible Russulaceous mushrooms from North West Himalayas, India. Kavaka 2017, 48, 41-46.
Emsen, B.; Guven, B.; Uzun, Y.; Kaya, A. Antioxidant and genotoxic effects of aqueous and methanol extracts from two edible mushrooms from Turkey in human peripheral lymphocytes. Int. J. Med. Mushrooms 2020, 22(2), 1-6. DOI: 10.1615/IntJMedMushrooms.2020033845
DOI: https://doi.org/10.1615/IntJMedMushrooms.2020033845
Yıldız, S. and Gürgen, A. Bazı yenilebilir yabani Lactarius mantarlarının biyoaktif ve radyoaktif özellikleri. Orman. Araşt. Derg. 2022, 9(Özel Sayı), 254-263. DOI: 10.17568/ogmoad.1111983
DOI: https://doi.org/10.17568/ogmoad.1111983
Erdoğan, S.; Soylu, M.K.; Başer, K.H.C. Bazı yabani mantarların antioksidan özellikleri. Nevşehir Bil. Teknol. Derg. 2017, 6, 254-260. DOI: 10.17100/nevbiltek.334595
DOI: https://doi.org/10.17100/nevbiltek.334595
Stanković, M.; Mitić, V.; Stankov Jovanović, V.; Dimitrijević, M.; Nikolić, J.; & Stojanović, G. (2022). Selected fungi of the genus Lactarius-screening of antioxidant capacity, antimicrobial activity, and genotoxicity. J. Toxicol. Env. Heal. A, 85(17), 699-714. DOI: 10.1080/15287394.2022.2075502
DOI: https://doi.org/10.1080/15287394.2022.2075502
Bonanome, A. and Grundy, S.M. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N. Engl. J. Med. 1988, 318(19), 1244-1248. DOI: 10.1056/NEJM198805123181905
DOI: https://doi.org/10.1056/NEJM198805123181905
Williams, C.M. Dietary fatty acids and human health. Ann. Zootech. 2000, 49(3), 165-180. DOI: 10.1051/animres:2000116
DOI: https://doi.org/10.1051/animres:2000116
Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113(1), 9-16. DOI: 10.1016/j.foodchem.2008.07.077
DOI: https://doi.org/10.1016/j.foodchem.2008.07.077
Üstün, O. Makrofungusların besin değeri ve biyolojik etkileri. Türk Hij. Deney.Biyol. Derg. 2011, 68(4), 223-240. DOI: : 10.5505/TurkHijyen.2011.00922
DOI: https://doi.org/10.5505/TurkHijyen.2011.00922
Yılmaz, H.Ç. and Bengü, A.Ş. The ınvestigation of fatty acids and mineral profiles of some edible Lactarius species (L. deliciosus, L. deterrimus, L. salmonicolor, L. sanguifluus, L. semisanguifluus) in the Uşak/Turkey province of Aegean Region. Biol. Divers. Conserv. 2018, 11(1), 95-104.
Kostić, M.; Ivanov, M.; Fernandes, Â.; Calhelha, R.C.; Glamočlija, J.; Barros, L.; Soković, M.; Ćirić, A. A comparative study of Lactarius mushrooms: Chemical characterization, antibacterial, antibiofilm, antioxidant and cytotoxic activity. J. Fungi 2023, 9(1), 70-79. DOI: 10.3390/jof9010070
DOI: https://doi.org/10.3390/jof9010070