Kumar V.; Abbas A.K.; Aster J.C. Zapalenie i Naprawa Tkanek. W Robbins Patologia, 10th ed. Edra Urban & Partner, Polska, 2020; 65-110.
Abdulkhaleq L.A.; Assi M.A.; Abdullah R.; Zamri-Saad M.; Taufiq-Yap Y.H.; Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet World 2018, 11(5):627-635, doi:10.14202/vetworld.2018.627-635
DOI: https://doi.org/10.14202/vetworld.2018.627-635
WHO. Non communicable Diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (na dzień: 19 czerwca 2022).
Hallstrand T.S.; Henderson W.R. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol 2010, 10(1):60-66, doi:10.1097/ACI.0b013e32833489c3
DOI: https://doi.org/10.1097/ACI.0b013e32833489c3
Hanna V.S.; Hafez E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res, 2018, 11:23-32, doi:10.1016/j.jare.2018.03.005
DOI: https://doi.org/10.1016/j.jare.2018.03.005
Samuelsson B. An Elucidation of the Arachidonic Acid Cascade. Drugs, 1987, 33(1):2-9, doi:10.2165/00003495-198700331-00003
DOI: https://doi.org/10.2165/00003495-198700331-00003
Calder P.C. Eicosanoids. Essays Biochem. 2020, 64(3):423-441, doi:10.1042/EBC20190083
DOI: https://doi.org/10.1042/EBC20190083
Evans J.F.; Ferguson A.D.; Mosley R.T.; Hutchinson J.H. What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibi-tors for inflammatory diseases. Trends Pharmacol Sci. 2008, 29(2):72-78, doi:10.1016/j.tips.2007.11.006
DOI: https://doi.org/10.1016/j.tips.2007.11.006
Savari S.; Vinnakota K.; Zhang Y.; Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol. 2014, 20(4):968-977, doi:10.3748/wjg.v20.i4.968
DOI: https://doi.org/10.3748/wjg.v20.i4.968
Bäck M.; Dahlén S.E.; Drazen J.M.; Evans J.F.; Serhan C.N.; Shimizu T.; Yokomizo T.; Rovati G.E. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Phar-macol Rev. 2011, 63(3):539-584, doi:10.1124/pr.110.004184
DOI: https://doi.org/10.1124/pr.110.004184
Araújo A.C.; Tang X.; Haeggström J.Z. Targeting cysteinyl-leukotrienes in abdominal aortic aneurysm. Prostaglandins Other Lipid Mediat. 2018, 139:24-28, doi:10.1016/j.prostaglandins.2018.09.007
DOI: https://doi.org/10.1016/j.prostaglandins.2018.09.007
Haeggström J.Z.; Funk C.D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011, 111(10):5866-5898, doi:10.1021/cr200246d
DOI: https://doi.org/10.1021/cr200246d
Kanaoka Y.; Austen K.F. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol. 2019, 142:65-84, doi:10.1016/bs.ai.2019.04.002
DOI: https://doi.org/10.1016/bs.ai.2019.04.002
Kanaoka Y.; Boyce J.A. Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts. Allergy Asthma Immunol Res. 2014, 6(4):288-295, doi:10.4168/aair.2014.6.4.288
DOI: https://doi.org/10.4168/aair.2014.6.4.288
Singh R.K.; Gupta S.; Dastidar S.; Ray A. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology. 2010, 85(6):336-349, doi:10.1159/000312669
DOI: https://doi.org/10.1159/000312669
Jo-Watanabe A.; Okuno T.; Yokomizo T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int J Mol Sci. 2019, 20(14):E3580, doi:10.3390/ijms20143580
DOI: https://doi.org/10.3390/ijms20143580
Reddanna P.; Prabhu K.S.; Whelan J.; Reddy C.C. Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4. Arch Biochem Biophys. 2003, 413(2):158-163, doi:10.1016/s0003-9861(03)00080-8
DOI: https://doi.org/10.1016/S0003-9861(03)00080-8
Choi J.H.; Kim M.A.; Park H.S. An update on the pathogenesis of the upper airways in aspirin-exacerbated respiratory disease. Curr Opin Allergy Clin Immunol. 2014, 14(1):1-6, doi:10.1097/ACI.0000000000000021
DOI: https://doi.org/10.1097/ACI.0000000000000021
Capra V.; Carnini C.; Accomazzo M.R;, Di Gennaro A.; Fiumicelli M.;,Borroni E.; Brivio I.; Buccellati C.; Mangano P;, Carnevali S.; Rovati G.; Sala A. Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling througthe CysLT₂ receptor. Prostaglandins Other Lipid Mediat. 2015, 120:115-125, doi:10.1016/j.prostaglandins.2015.03.007
DOI: https://doi.org/10.1016/j.prostaglandins.2015.03.007
Colazzo F.; Gelosa P.; Tremoli E.; Sironi L.; Castiglioni L. Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm, 2017, 2017:2432958. doi:10.1155/2017/2432958
DOI: https://doi.org/10.1155/2017/2432958
Capra V.; Rovati G;, Mangano P.; Buccellati C,; Murphy R.C.; Sala A. Transcellular biosynthesis of eicosanoid lipid mediators. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2. 2015,1851(4):377-38,. doi:10.1016/j.bbalip.2014.09.002
DOI: https://doi.org/10.1016/j.bbalip.2014.09.002
Samuelsson B. The leukotrienes: a new group of biologically active compounds. Pure and Applied Chemistry, 1981, 53(6):1203-1213, doi:10.1351/pac198153061203
DOI: https://doi.org/10.1351/pac198153061203
Lynch K.R.; O’Neill G.P.; Liu Q. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999, 399(6738):789-793, doi:10.1038/21658
DOI: https://doi.org/10.1038/21658
Takasaki J.; Kamohara M.; Matsumoto.; Saito T.; Sugimoto T.; Ohishi T.; Ishii H.; Ota T.; Nishikawa T.; Kawai Y.; Masuho Y.; Isogai T.; Suzuki Y.; Sugano S.; Furuichi K. The molecular characterization and tissue distribution of the human cysteinyl leuko-triene CysLT(2) receptor. Biochem Biophys Res Commun. 2000, 274(2):316-322, doi:10.1006/bbrc.2000.3140
DOI: https://doi.org/10.1006/bbrc.2000.3140
Capra V.; Nicosia S.; Ragnini D.; Mezzetti M.; Keppler D.; Rovati G.E. Identification and characterization of two cyste-inyl-leukotriene high affinity binding sites with receptor characteristics in human lung parenchyma. Mol Pharmacol. 1998, 53(4):750-758, doi:10.1124/mol.53.4.750
DOI: https://doi.org/10.1124/mol.53.4.750
Heise C.E.; O’Dowd B.F.; Figueroa D.J.; Sawyer N.; Nguyen T.; Im D.S.; Stocco R.; Bellefeuille J.N.; Abramowitz M.; Cheng R.; Williams D.L.; Zeng Z.; Liu Q.; Ma L.; Clements M.K.; Coulombe N.; Liu Y.; Austin C.P.; George S.R.; O’Neill G.P.; Metters K.M.; Lynch K.R.; Evans J.F. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem. 2000, 275(39):30531-30536, doi:10.1074/jbc.M003490200
DOI: https://doi.org/10.1074/jbc.M003490200
Bankova L.G.; Lai J.; Yoshimoto E.; Austen K.F.; Kanaoka Y.; Barrett N.A. The Leukotriene E4 Receptor, GPR99 Mediates Mast Cell-Dependent Mucosal Responses to the Mold Allergen, Alternaria alternata. J. Allergy Clin. Immunol. 2016, 137(2):AB409, doi:10.1016/j.jaci.2015.12.1268
DOI: https://doi.org/10.1016/j.jaci.2015.12.1268
Kanaoka Y.; Maekawa A,.; Austen K.F. Identification of GPR99 Protein as a Potential Third Cysteinyl Leukotriene Receptor with a Preference for Leukotriene E4 Ligand. J Biol Chem. 2013, 288(16):10967-10972, doi:10.1074/jbc.C113.453704
DOI: https://doi.org/10.1074/jbc.C113.453704
Maekawa A.; Kanaoka Y.; Xing W.; Austen K.F. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A 2008, 105(43):16695-16700, doi:10.1073/pnas.0808993105
DOI: https://doi.org/10.1073/pnas.0808993105
Rovati G.E.; Capra V. Cysteinyl-Leukotriene Receptors and Cellular Signals. Sci World J. 2007, 7:1375-1392. doi:10.1100/tsw.2007.185
DOI: https://doi.org/10.1100/tsw.2007.185
Chen K.; Yu Z.; Yang J.; Li H. Expression of cysteinyl leukotriene receptor GPR17 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Asian Pac J Allergy Immunol. 2018, 36(2):93-100, doi:10.12932/AP-030417-0063
DOI: https://doi.org/10.12932/AP-030417-0063
Wu X.; Hong H.; Zuo K.; Han M.; Li J.; Wen W.; Xu G.; Miao B.; Li H. Expression of leukotriene and its receptors in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2016, 6(1):75-81. doi:10.1002/alr.21625
DOI: https://doi.org/10.1002/alr.21625
Bäck M.; Powell W.S.; Dahlén S.E.; Drazen J.M.; Evans J.F.; Serhan C.N.; Shimizu T.; Yokomizo T.; Rovati G.E. Update on leuko-triene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol. 2014, 171(15):3551-3574, doi:10.1111/bph.12665
DOI: https://doi.org/10.1111/bph.12665
Hamanaka N. 1.07 - Eicosanoids in Mammals. W Comprehensive Natural Products Chemistry, 1st ed.; Barton S.D.; Nakanishi K.; Meth-Cohn O. eds.; Pergamon, United Kingdom, 1999, 159-206, doi:10.1016/B978-0-08-091283-7.00153-3
DOI: https://doi.org/10.1016/B978-0-08-091283-7.00153-3
Peters-Golden M.; Henderson W.R.; Leukotrienes. N Engl J Med. 2007, 357(18):1841-1854, doi:10.1056/NEJMra071371
DOI: https://doi.org/10.1056/NEJMra071371
Baptista-dos-Reis R.; Muniz V.S.; Neves J.S.; Multifaceted roles of cysteinyl leukotrienes in eliciting eosinophil granule protein secretion. Biomed Res Int. 2015, 2015:848762, doi:10.1155/2015/848762
DOI: https://doi.org/10.1155/2015/848762
Cobanoğlu B.; Toskala E.; Ural A.; Cingi C. Role of leukotriene antagonists and antihistamines in the treatment of allergic rhinitis. Curr Allergy Asthma Rep. 2013, 13(2):203-208, doi:10.1007/s11882-013-0341-4
DOI: https://doi.org/10.1007/s11882-013-0341-4
Du J.; Ba L.; Zhou J.; Yu L.; Liu R.; Zhang J.; Liu F.; Xian J.; Liu S.; Liu Y. The role of cysteinyl leukotrienes and their receptors in refractory nasal polyps. Prostaglandins Leukot Essent Fatty Acids. 2017, 126:39-48, doi:10.1016/j.plefa.2017.09.009
DOI: https://doi.org/10.1016/j.plefa.2017.09.009
Neves J.S.; Radke A.L.; Weller P.F.; Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol. 2010, 125(2):477-482, doi:10.1016/j.jaci.2009.11.029
DOI: https://doi.org/10.1016/j.jaci.2009.11.029
Ichiyama T.; Kajimoto M.; Hasegawa M.; Hashimoto K.; Matsubara T.; Furukawa S. Cysteinyl leukotrienes enhance tumour necro-sis factor-alpha-induced matrix metalloproteinase-9 in human monocytes/macrophages. Clin Exp Allergy. 2007, 37(4):608-614, doi:10.1111/j.1365-2222.2007.02692.x
DOI: https://doi.org/10.1111/j.1365-2222.2007.02692.x
Lagente V.; Boichot E. Role of matrix metalloproteinases in the inflammatory process of respiratory diseases. J Mol Cell Cardiol. 2010, 48(3):440-444, doi:10.1016/j.yjmcc.2009.09.017
DOI: https://doi.org/10.1016/j.yjmcc.2009.09.017
Cingi C.; Muluk N.B.; Ipci K.; Şahin E. Antileukotrienes in upper airway inflammatory diseases. Curr Allergy Asthma Rep. 2015, 15(11):64, doi:10.1007/s11882-015-0564-7
DOI: https://doi.org/10.1007/s11882-015-0564-7
Theron A.J.; Steel H.C.; Tintinger G.R.; Gravett C.M.; Anderson R.; Feldman C. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res. 2014, 2014:608930. doi:10.1155/2014/608930
DOI: https://doi.org/10.1155/2014/608930
Sokolowska M.; Rovati G.E.; Diamant Z.; Untersmayr E.; Schwarze J.; Lukasik Z.; Sava F.; Angelina A.; Palomares O.; Akdis C.A..; O’Mahony L.; Sanak M.; Dahlen S.E.; Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021, 76(1):114-130, doi:10.1111/all.14295
DOI: https://doi.org/10.1111/all.14295
Hon K.L.E.; Leung T.F.; Leung A.K.C. Clinical effectiveness and safety of montelukast in asthma. What are the conclusions from clinical trials and meta-analyses? Drug Des Devel Ther, 2014, 8:839-850, doi:10.2147/DDDT.S39100
DOI: https://doi.org/10.2147/DDDT.S39100
Ducharme F.M.; Lasserson T.J.; Cates C.J. Addition to inhaled corticosteroids of long-acting beta2-agonists versus an-ti-leukotrienes for chronic asthma. Cochrane Database Syst Rev. 2011, (5):CD003137, doi:10.1002/14651858.CD003137.pub4
DOI: https://doi.org/10.1002/14651858.CD003137.pub4
Choi G.S.; Kim J.H.; Shin Y.S.; Ye Y.M.; Kim S.H.; Park H.S.; Eosinophil activation and novel mediators in the aspirin-induced nasal response in AERD. Clin Exp Allergy. 2013, 43(7):730-740, doi:10.1111/cea.12096
DOI: https://doi.org/10.1111/cea.12096
Choby G.W.; Lee S. Pharmacotherapy for the treatment of asthma: current treatment options and future directions. Int Forum Al-lergy Rhinol. 2015, 5 Suppl 1:S35-40, doi:10.1002/alr.21592
DOI: https://doi.org/10.1002/alr.21592
Pyasi K.; Tufvesson E.; Moitra S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits “losing in translation”? Pulm Pharmacol Ther. 2016, 41:52-59, doi:10.1016/j.pupt.2016.09.006
DOI: https://doi.org/10.1016/j.pupt.2016.09.006
Dahlén B.; Nizankowska E.; Szczeklik A.; Zetterström O.; Bochenek G.; Kumlin M.; Mastalerz L.; Pinis G.; Swanson L.J.; Bood-hoo T.I.; Wright S.; Dube L.M.; Dahlen S.E. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med. 1998, 157(4 Pt 1):1187-1194, doi:10.1164/ajrccm.157.4.9707089
DOI: https://doi.org/10.1164/ajrccm.157.4.9707089
Hallstrand T.S.; Henderson W.R.; Role of leukotrienes in exercise-induced bronchoconstriction. Curr Allergy Asthma Rep. 2009, 9(1):18-25, doi:10.1007/s11882-009-0003-8
DOI: https://doi.org/10.1007/s11882-009-0003-8
Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention NIH Pub. No 02–3659, January 1995 (2018 Update). https://ginasthma.org/wp-content/uploads/2019/01/2018-GINA.pdf (na dzień: 19 czerwca 2022)
Peters-Golden M.; Swern A.; Bird S.S.; Hustad C.M.; Grant E.; Edelman J.M.; Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006, 27(3):495-503, doi:10.1183/09031936.06.00077205
DOI: https://doi.org/10.1183/09031936.06.00077205
Diamant Z.; Aalders W.; Parulekar A.; Bjermer L.; Hanania N.A. Targeting lipid mediators in asthma: time for reappraisal. Curr Opin Pulm Med. 2019, 25(1):121-127. doi:10.1097/MCP.0000000000000544
DOI: https://doi.org/10.1097/MCP.0000000000000544
Shirasaki H.; Himi T. Role of Cysteinyl Leukotrienes in Allergic Rhinitis. Adv Otorhinolaryngol. 2016, 77:40-45, doi:10.1159/000441871
DOI: https://doi.org/10.1159/000441871
Roquet A.; Dahlén B.; Kumlin M.; Ihre E.; Anstren G.; Binks S.; Dahlen S.E. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med. 1997, 155(6):1856-1863, doi:10.1164/ajrccm.155.6.9196086
DOI: https://doi.org/10.1164/ajrccm.155.6.9196086
Kim M.K.; Lee S.Y.; Park H.S.; Yoon H.J.; Kim S.H.; Cho Y.J.; Yoo K.H.; Lee S.K.; Kim H.K.; Park J.W.; Chung J.G.; Choi B.W.; Lee B.J.; Chang Y.S.; Jo E.J.; Lee S.Y.; Cho Y.S.; Jee J.M.; Jung J.; Park C.S. A Randomized, Multicenter, Double-blind, Phase III Study to Evaluate the Efficacy on Allergic Rhinitis and Safety of a Combination Therapy of Montelukast and Levocetirizine in Pa-tients With Asthma and Allergic Rhinitis. Clin Ther. 2018, 40(7):1096-1107.e1, doi:10.1016/j.clinthera.2018.04.021
DOI: https://doi.org/10.1016/j.clinthera.2018.04.021
Noonan M.J.; Chervinsky P.; Brandon M.; Zhang J.; Kundu S.; McBurney J.; Reiss T.F. Montelukast, a potent leukotriene receptor antagonist, causes dose-related improvements in chronic asthma. Montelukast Asthma Study Group. Eur Respir J. 1998, 11(6):1232-1239, doi:10.1183/09031936.98.11061232
DOI: https://doi.org/10.1183/09031936.98.11061232
Miligkos M.; Bannuru R.R.; Alkofide H.; Kher S.R.; Schmid C.H.; Balk E.M. Leukotriene-receptor antagonists versus placebo in the treatment of asthma in adults and adolescents: a systematic review and meta-analysis. Ann Intern Med. 2015, 163(10):756-767, doi:10.7326/M15-1059
DOI: https://doi.org/10.7326/M15-1059
Pasaoglu G.; Mungan D.; Abadoglu O.; Misirligil Z. Leukotriene receptor antagonists: a good choice in the treatment of premen-strual asthma? J Asthma. 2008, 45(2):95-99, doi:10.1080/02770900701751799
DOI: https://doi.org/10.1080/02770900701751799
Kelly M.M.; Chakir J.; Vethanayagam D.; Boulet L.P.; Laviiolette M.; Gauldie J.; O’Byrne P.M. Montelukast treatment attenuates the increase in myofibroblasts following low-dose allergen challenge. Chest. 2006, 130(3):741-753. doi:10.1378/chest.130.3.741
DOI: https://doi.org/10.1378/chest.130.3.741
Gauvreau G.M.; Plitt J.R.; Baatjes A.; MacGlashan D.W.; Expression of functional cysteinyl leukotriene receptors by human ba-sophils. J Allergy Clin Immunol. 2005, 116(1):80-87, doi:10.1016/j.jaci.2005.03.014
DOI: https://doi.org/10.1016/j.jaci.2005.03.014
Yonetomi Y.; Sekioka T.; Kadode M.; Kitamine Y.; Kamiya A.; Inoue A.; Nakao T.; Nomura H.; Murata M.; Nakao S.; Nambu F.; Fujita M.; Nakade S.; Kawabata K. Effects of ONO-6950, a novel dual cysteinyl leukotriene 1 and 2 receptors antagonist, in a guinea pig model of asthma. Eur J Pharmacol. 2015, 765:242-248, doi:10.1016/j.ejphar.2015.08.041
DOI: https://doi.org/10.1016/j.ejphar.2015.08.041
Sekioka T.; Kadode M.; Fujii M.; Kawabata K.; Abe T.; Horiba M.; Kohno S.; Nabe T. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction. Allergol Int. 2015, 64(4):351-358, doi:10.1016/j.alit.2015.04.008
DOI: https://doi.org/10.1016/j.alit.2015.04.008
Matsuda M.; Tabuchi Y.; Nishimura K.; Nakamura Y.; Sekioka T.; Kawabata K.; Nabe T. Increased expression of CysLT2 receptors in the lung of asthmatic mice and role in allergic responses. Prostaglandins Leukot Essent Fatty Acids. 2018, 131:24-31, doi:10.1016/j.plefa.2018.03.007
DOI: https://doi.org/10.1016/j.plefa.2018.03.007
Celik P.; Sakar A.; Havlucu Y.; Yuksel H.; Turkdogan P.; Yorgancioglu A.; Short-term effects of montelukast in stable patients with moderate to severe COPD. Respir Med. 2005, 99(4):444-450, doi:10.1016/j.rmed.2004.09.008
DOI: https://doi.org/10.1016/j.rmed.2004.09.008
Duah E.; Adapala R.K.; Al-Azzam N.; Kondeti V.; Gombedza F.; Thodeti C.K.; Paruchuri S. Cysteinyl leukotrienes regulate endo-thelial cell inflammatory and proliferative signals through CysLT₂ and CysLT₁ receptors. Sci Rep. 2013, 3:3274, doi:10.1038/srep03274
DOI: https://doi.org/10.1038/srep03274
Bäck M. Inflammatory signaling through leukotriene receptors in atherosclerosis. Curr Atheroscler Rep. 2008, 10(3):244-251, doi:10.1007/s11883-008-0038-7
DOI: https://doi.org/10.1007/s11883-008-0038-7
Bäck M. Leukotriene receptors: crucial components in vascular inflammation. ScientificWorldJournal. 2007;7:1422-1439. doi:10.1100/tsw.2007.187
DOI: https://doi.org/10.1100/tsw.2007.187
Sala A.; Aliev G.M.; Rossoni G.; Berti F.; Buccellati C.; Burnstock G.; Folco G.; Maclouf J. Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit. Blood. 1996, 87(5):1824-1832.
DOI: https://doi.org/10.1182/blood.V87.5.1824.bloodjournal8751824
Sala A.; Folco G.; Murphy R.C. Transcellular biosynthesis of eicosanoids. Pharmacol Rep. 2010, 62(3):503-510, doi: 10.1016/s1734-1140(10)70306-6
DOI: https://doi.org/10.1016/S1734-1140(10)70306-6
Di Gennaro A.; Carnini C.; Buccellati C.; Ballerio R.; Zarini S.; Fumagalli F.; Viappiani S.; Librizzi L.; Hernandez A.; Murphy R.C.; Constantin G.; De Curtis M.; Folco G.; Sala A. Cysteinyl-leukotrienes receptor activation in brain inflammatory reactions and cer-ebral edema formation: a role for transcellular biosynthesis of cysteinyl-leukotrienes. FASEB J. 2004, 18(7):842-844, doi:10.1096/fj.03-0599fje
DOI: https://doi.org/10.1096/fj.03-0599fje
Singh R.K. Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer’s disease. Neurol Sci. 2020, 41(8):2081-2093, doi:10.1007/s10072-020-04369-7
DOI: https://doi.org/10.1007/s10072-020-04369-7
Singh R.K.; Tandon R.; Dastidar S.G.; Ray A. A review on leukotrienes and their receptors with reference to asthma. J Asthma. 2013, 50(9):922-931, doi:10.3109/02770903.2013.823447
DOI: https://doi.org/10.3109/02770903.2013.823447
Gelosa P.; Colazzo F.; Tremoli E.; Sironi L.; Castiglioni L. Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cere-bral Diseases. Mediators Inflamm. 2017, 2017:3454212, doi:10.1155/2017/3454212
DOI: https://doi.org/10.1155/2017/3454212
Khan H.; Gupta A.; Singh T.G.; Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep. 2021, 73(5):1240-1254, doi:10.1007/s43440-021-00258-8
DOI: https://doi.org/10.1007/s43440-021-00258-8
Wang Y.; Yang Y.; Zhang S.; Li C.; Zhang L. Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: impli-cations for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging. 2020, 87:1-10, doi:10.1016/j.neurobiolaging.2019.12.013
DOI: https://doi.org/10.1016/j.neurobiolaging.2019.12.013
Huang X.Q.; Zhang X.Y.; Wang X.R.; Yu S.Y.; Fang S.H.; Lu Y.B.; Zhang W.P.; Wei E.Q. Transforming growth factor β1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation. 2012, 9:145, doi:10.1186/1742-2094-9-145
DOI: https://doi.org/10.1186/1742-2094-9-145
Chen L.; Yang Y.; Li C.T.; Zhang S.R.; Zheng W.; Wei E.Q.; Zhang L.H. CysLT2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res. 2015, 1624:433-445, doi:10.1016/j.brainres.2015.08.007
DOI: https://doi.org/10.1016/j.brainres.2015.08.007
Qi L.L.; Fang S.H.; Shi W.Z.; Huang X.Q.; Zhang X.Y.; Lu Y.B.; Zhang W.P.; Wei E.Q. CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes. Life Sci. 2011, 88(1-2):50-56, doi:10.1016/j.lfs.2010.10.025
DOI: https://doi.org/10.1016/j.lfs.2010.10.025
Shi W.Z.; Zhao C.Z.; Zhao B.; Shi Q.J.; Zhang L.H.; Wang Y.F.; Fang S.H.; Lu Y.B.; Zhang W.P.; Wei E.Q. Aggravated inflammation and increased expression of cysteinyl leukotriene receptors in the brain after focal cerebral ischemia in AQP4-deficient mice. Neu-rosci Bull. 2012, 28(6):680-692. doi:10.1007/s12264-012-1281-z
DOI: https://doi.org/10.1007/s12264-012-1281-z
Zhao C.Z.; Zhao B.; Zhang X.Y.; Huang X.Q.; Shi W.Z.; Liu H.L.; Fang S.H.; Lu Y.B.; Zhang W.P.; Tang F.D.; Wei E.Q. Cysteinyl leukotriene receptor 2 is spatiotemporally involved in neuron injury, astrocytosis and microgliosis after focal cerebral ischemia in rats. Neuroscience. 2011, 189:1-11, doi:10.1016/j.neuroscience.2011.05.066
DOI: https://doi.org/10.1016/j.neuroscience.2011.05.066
Zhang X.Y.; Wang X.R.; Xu D.M.; Yu S.Y.; Shi Q.J.; Zhang L.H.; Chen L.; Fang S.H.; Lu Y.B.; Zhang W.P.; Wei E.Q. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation. J Pharmacol Exp Ther. 2013, 346(2):328-341, doi:10.1124/jpet.113.203604
DOI: https://doi.org/10.1124/jpet.113.203604
Wunder F.; Tinel H.; Kast R.; Geerts A.; Becker E.M.; Kolkhof P.; Hutter J.; Erguden J.; Harter M. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. Br J Pharmacol. 2010, 160(2):399-409, doi:10.1111/j.1476-5381.2010.00730.x
DOI: https://doi.org/10.1111/j.1476-5381.2010.00730.x
Zhao R.; Ying M.; Gu S.; Yin W.; Li Y.; Yuan H.; Fang S.; Li M. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience. 2019, 422:99-118, doi:10.1016/j.neuroscience.2019.10.048
DOI: https://doi.org/10.1016/j.neuroscience.2019.10.048
Shi Q.J.; Wang H.; Liu Z.X.; Fang S.H.; Song X.M.; Lu Y.B.; Zhang W.P.; Sa X.Y.; Ying H.Z.; Wei E.Q. HAMI 3379, a CysLT2R antagonist, dose- and time-dependently attenuates brain injury and inhibits microglial inflammation after focal cerebral ischemia in rats. Neuroscience. 2015, 291:53-69, doi:10.1016/j.neuroscience.2015.02.002
DOI: https://doi.org/10.1016/j.neuroscience.2015.02.002
Shi Q.J.; Xiao L.; Zhao B.; Zhang X.Y.; Wang X.R.; Xu D.M.; Yu S.Y.; Fang S.H.; Lu Y.B.; Zhang W.P.; Sa X.Y.; Wei E.Q. Intracer-ebroventricular injection of HAMI 3379, a selective cysteinyl leukotriene receptor 2 antagonist, protects against acute brain injury after focal cerebral ischemia in rats. Brain Res. 2012, 1484:57-67, doi:10.1016/j.brainres.2012.09.020
DOI: https://doi.org/10.1016/j.brainres.2012.09.020
Shi S.S.; Yang W.Z.; Tu X.K.; Wang C.H.; Chen C.M.; Chen Y. 5-Lipoxygenase inhibitor zileuton inhibits neuronal apoptosis following focal cerebral ischemia. Inflammation. 2013, 36(6):1209-1217, doi:10.1007/s10753-013-9657-4
DOI: https://doi.org/10.1007/s10753-013-9657-4
Ciceri P.; Rabuffetti M.; Monopoli A.; Nicosia S. Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br J Pharmacol. 2001, 133(8):1323-1329, doi:10.1038/sj.bjp.0704189
DOI: https://doi.org/10.1038/sj.bjp.0704189
Saad M.A.; Abdelsalam R.M.; Kenawy S.A.; Attia A.S. Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats. Neurochem Res. 2015, 40(1):139-150. doi:10.1007/s11064-014-1478-9
DOI: https://doi.org/10.1007/s11064-014-1478-9
Gelosa P.; Bonfanti E.; Castiglioni L.; Delgado-Garcia J.; Gruart A.; Fontana L.; Gotti M.; Tremoli E.; Lecca D.; Fumagalli M.; Cimino M.; Aigner L.; Abbracchio M.P.; Sironi L. Improvement of fiber connectivity and functional recovery after stroke by mon-telukast, an available and safe anti-asthmatic drug. Pharmacol Res. 2019, 142:223-236. doi:10.1016/j.phrs.2019.02.025
DOI: https://doi.org/10.1016/j.phrs.2019.02.025
Zhao R.; Shi W.Z.; Zhang Y.M.; Fang S.H.; Wei E.Q. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. J Pharm Pharmacol. 2011, 63(4):550-557. doi:10.1111/j.2042-7158.2010.01238.x
DOI: https://doi.org/10.1111/j.2042-7158.2010.01238.x
Fang S.H.; Wei E.Q.; Zhou Y.; Wang M.L.; Zhang W.P.; Yu G.L.; Chu L.S.; Chen Z. Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats. Neuroscience. 2006;140(3):969-979. doi:10.1016/j.neuroscience.2006.02.051
DOI: https://doi.org/10.1016/j.neuroscience.2006.02.051
Becher UM, Ghanem A, Tiyerili V, Fürst DO, Nickenig G, Mueller CFH. Inhibition of leukotriene C4 action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury. J Mol Cell Cardiol. 2011, 50(3):570-577. doi:10.1016/j.yjmcc.2010.11.013
DOI: https://doi.org/10.1016/j.yjmcc.2010.11.013
Hoxha M.; Rovati G.E.; Cavanillas A.B. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol. 2017, 73(7):799-809. doi:10.1007/s00228-017-2242-2
DOI: https://doi.org/10.1007/s00228-017-2242-2
Ni N.C.; Ballantyne L.L.; Mewburn J.D.; Funk C.D. Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2014, 34(2):321-330. doi:10.1161/ATVBAHA.113.302536
DOI: https://doi.org/10.1161/ATVBAHA.113.302536
Ni N.C.; Yan D.; Ballantyne L.L.; Barajas-Espinoza A.; St Amand T.; Pratt D.A.; Funk C.D A selective cysteinyl leukotriene re-ceptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice. J Pharmacol Exp Ther. 2011, 339(3):768-778. doi:10.1124/jpet.111.186031
DOI: https://doi.org/10.1124/jpet.111.186031
Ito T.; Toki Y.; Hieda N.; Okumura K.; Hashimoto H.; Ogawa K.; Satake T. Protective effects of a thromboxane synthetase inhibi-tor, a thromboxane antagonist, a lipoxygenase inhibitor and a leukotriene C4, D4 antagonist on myocardial injury caused by acute myocardial infarction in the canine heart. Jpn Circ J. 1989, 53(9):1115-1121. doi:10.1253/jcj.53.1115
DOI: https://doi.org/10.1253/jcj.53.1115
Chu L.S.; Wei E.Q.; Yu G.L.; Fang S.H.; Zhou Y,; Wang M.L.; Zhang W.P. Pranlukast reduces neutrophil but not macro-phage/microglial accumulation in brain after focal cerebral ischemia in mice. Acta Pharmacol Sin. 2006, 27(3):282-288. doi:10.1111/j.1745-7254.2006.00290.x
DOI: https://doi.org/10.1111/j.1745-7254.2006.00290.x
Allen S.; Dashwood M.; Morrison K.; Yacoub M. Differential leukotriene constrictor responses in human atherosclerotic coro-nary arteries. Circulation. 1998, 97(24):2406-2413. doi:10.1161/01.cir.97.24.2406
DOI: https://doi.org/10.1161/01.CIR.97.24.2406
Carnini C.; Accomazzo M.R.; Borroni E.; Vitellaro-Zuccarello L.; Durand T.; Folco G.; Rovati G.E.; Capra V.; Sala A. Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT2 receptor. FASEB J. 2011, 25(10):3519-3528. doi:10.1096/fj.10-177030
DOI: https://doi.org/10.1096/fj.10-177030
Jiang W.; Hall S.R.; Moos M.P.W.; Cao R.Y. Ishii S.; Ogunyankin K.O.; Melo L.G.; Funk C.D. Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am J Pathol. 2008, 172(3):592-602. doi:10.2353/ajpath.2008.070834
DOI: https://doi.org/10.2353/ajpath.2008.070834
Mueller C.F.H.; Wassmann K.; Widder J.D.; Wassmann S.; Chen C.H.; Keuler B.; Kudin A.; Kunz W.S.; Nickenig G. Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation. 2008, 117(22):2912-2918. doi:10.1161/CIRCULATIONAHA.107.747667
DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.747667
Bäck M.; Hansson G.K.; Leukotriene receptors in atherosclerosis. Ann Med. 2006, 38(7):493-502. doi:10.1080/07853890600982737
DOI: https://doi.org/10.1080/07853890600982737
Gautier-Veyret E.; Bäck M.; Arnaud C.; Belaidi E.; Tamisier R.; Levy P.; Arnol N.; Perrin M.; Pepin J.L.; Stanke-Labesque F. Cysteinyl-leukotriene pathway as a new therapeutic target for the treatment of atherosclerosis related to obstructive sleep apnea syndrome. Pharmacol Res. 2018, 134:311-319. doi:10.1016/j.phrs.2018.06.014
DOI: https://doi.org/10.1016/j.phrs.2018.06.014
Jawien J.; Gajda M.; Rudling M.; Mateuszuk L.; Olszanecki R.; Guzik T.J.; Cichocki T.; Chlopicki S.; Korbut R. Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice. Eur J Clin Invest. 2006, 36(3):141-146. doi:10.1111/j.1365-2362.2006.01606.x
DOI: https://doi.org/10.1111/j.1365-2362.2006.01606.x
Jawień J.; Gajda M.; Olszanecki R.; Korbut R.; BAY x 1005 attenuates atherosclerosis in apoE/LDLR - double knockout mice. J Physiol Pharmacol. 2007, 58(3):583-588.
Jawien J.; Gajda M.; Wołkow P.; Zurańska J.; Olszanecki R.; Korbut R.; The effect of montelukast on atherogenesis in ap-oE/LDLR-double knockout mice. J Physiol Pharmacol. 2008, 59(3):633-639.
Liu D.; Ge S.; Zhou G.; Xu G.; Zhang R.; Zhu W.; Liu Z.; Cheng S.; Liu X. Montelukast inhibits matrix metalloproteinases ex-pression in atherosclerotic rabbits. Cardiovasc Drugs Ther. 2009, 23(6):431-437. doi:10.1007/s10557-009-6211-6
DOI: https://doi.org/10.1007/s10557-009-6211-6
Di Gennaro A.; Araújo A.C.; Busch A.; Jin H.; Wagsater D.; Vorkapic E.; Caidahl K.; Eriksson P.; Sammuelsson B.; Maegdefessel L.; Maeggstrom J. Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proc Natl Acad Sci U S A. 2018, 115(8):1907-1912. doi:10.1073/pnas.1717906115
DOI: https://doi.org/10.1073/pnas.1717906115
Kawai Y.; Narita Y.; Yamawaki-Ogata A.; Usui A.; Komori K.; Montelukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Induces M2 Macrophage Polarization and Inhibits Murine Aortic Aneurysm Formation. Biomed Res Int. 2019, 2019:9104680. doi:10.1155/2019/9104680
DOI: https://doi.org/10.1155/2019/9104680
Di Gennaro A.; Wågsäter D.; Mäyränpää M.I.; Gabrielsen A.; Swedenborg J.; Hamsten A.; Samuelsson B.; Eriksson P.; Haegg-strom J. Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human ab-dominal aortic aneurysm. Proc Natl Acad Sci U S A. 2010, 107(49):21093-21097. doi:10.1073/pnas.1015166107
DOI: https://doi.org/10.1073/pnas.1015166107
Rahman S.O.; Singh R.K.; Hussain S.; Akhtar M.; Najmi A.K. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer’s disease. Eur J Pharmacol. 2019, 842:208-220. doi:10.1016/j.ejphar.2018.10.040
DOI: https://doi.org/10.1016/j.ejphar.2018.10.040
Firuzi O.; Zhuo J.; Chinnici C.M.; Wisniewski T.; Praticò D. 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer’s disease. FASEB J. 2008, 22(4):1169-1178. doi:10.1096/fj.07-9131.com
DOI: https://doi.org/10.1096/fj.07-9131.com
Hsieh H.L.; Yang C.M. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int. 2013, 2013:484613. doi:10.1155/2013/484613
DOI: https://doi.org/10.1155/2013/484613
Lai J.; Hu M.; Wang H.; Hu M.; Long Y.; Miao M.X.; Li J.C.; Wang X.B.; Kong L.Y.; Hong H. Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology. 2014, 79:707-714. doi:10.1016/j.neuropharm.2014.01.011
DOI: https://doi.org/10.1016/j.neuropharm.2014.01.011
Michael J.; Marschallinger J.; Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Dis-cov Today. 2019, 24(2):505-516. doi:10.1016/j.drudis.2018.09.008
DOI: https://doi.org/10.1016/j.drudis.2018.09.008
Chu J.; Praticò D. Involvement of 5-lipoxygenase activating protein in the amyloidotic phenotype of an Alzheimer’s disease mouse model. J Neuroinflammation. 2012, 9:127. doi:10.1186/1742-2094-9-127
DOI: https://doi.org/10.1186/1742-2094-9-127
Ishikura Y.; Maeda-Minami A.; Hosokawa M.; Onoda A.; Kawano Y.; Ihara T.; Sugamata M.; Takeda K.; Mano Y. Leukotriene Receptor Antagonist Use and Dementia Risk in Patients With Asthma: A Retrospective Cohort Study. In Vivo. 2021, 35(6):3297-3303. doi:10.21873/invivo.12625
DOI: https://doi.org/10.21873/invivo.12625
Hajjar I. Effects of Montelukast Therapy on Alzheimer’s Disease (EMERALD). https://clinicaltrials.gov/ct2/show/NCT03991988 (na dzień: 16 czerwca 2022)
Wallin J.; Svenningsson P. Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflamma-tion in Parkinson’s Disease. Int J Mol Sci. 2021, 22(11):5606. doi:10.3390/ijms22115606
DOI: https://doi.org/10.3390/ijms22115606
Lai J.; Mei Z.L.; Wang H.; Hu M.; Long Y.; Miao M.X.; Li N. Hong H. Montelukast rescues primary neurons against Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int. 2014, 75:26-31. doi:10.1016/j.neuint.2014.05.006
DOI: https://doi.org/10.1016/j.neuint.2014.05.006
Marschallinger J.; Schäffner I., Klein B.; Gelfert R.; Rivera F.J.; Illes S.; Grassner L.; Janssen M.; Rotheneichner P.; Schmuckermair C.; Coras R.; Boccazzi M.; Chishty M.; Lagler F.B.; Renic M.; Bauer H.C.; Singewald N.; Blumcke I.; Bogdahn U.; Couil-lard-Despres S.; Lie D.C.; Abbracchio M.P.; Aigner L. Structural and functional rejuvenation of the aged brain by an approved an-ti-asthmatic drug. Nat Commun. 2015, 6:8466. doi:10.1038/ncomms9466
DOI: https://doi.org/10.1038/ncomms9466
Kang K.H.; Liou H.H.; Hour M.J.; Liou H.C.; Fu W.M. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuro-pharmacology. 2013, 73:380-387. doi:10.1016/j.neuropharm.2013.06.014
DOI: https://doi.org/10.1016/j.neuropharm.2013.06.014
Jang H.; Kim S.; Lee J.M.; Oh Y.S.; Park S.M.; Kim S.R. Montelukast treatment protects nigral dopaminergic neurons against mi-croglial activation in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neuroreport. 2017, 28(5):242-249. doi:10.1097/WNR.0000000000000740
DOI: https://doi.org/10.1097/WNR.0000000000000740
Tsai M.J.; Chang W.A.; Chuang C.H.; Wu K.L.; Cheng C.H.; Sheu C.C.; Hsu Y.L.; Hung J.Y. Cysteinyl Leukotriene Pathway and Cancer. Int J Mol Sci. 2021, 23(1):120. doi:10.3390/ijms23010120
DOI: https://doi.org/10.3390/ijms23010120
Burke L.; Butler C.T.; Murphy A.; Moran B.; Gallagher W.M.; O’Sullivan J.; Kennedy B.N. Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer. Front Cell Dev Biol. 2016, 4:103. doi:10.3389/fcell.2016.00103
DOI: https://doi.org/10.3389/fcell.2016.00103
Duah E.; Teegala L.R.; Kondeti V.; Adapala R.K.; Keshamouni V.; Kanaoka Y.; Austen K.F.; Thodeti C.K.; Parachuri S. Cysteinyl leukotriene 2 receptor promotes endothelial permeability, tumor angiogenesis, and metastasis. PNAS. 2019, 116(1):199-204. doi:10.1073/pnas.1817325115
DOI: https://doi.org/10.1073/pnas.1817325115
Bellamkonda K.; Satapathy S.R.; Douglas D.; Chandrashekar N.; Selvanesan B.; Liu M.; Savari S.; Jonsson G.; Sjolander A. Mon-telukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human co-lon cancer. Cancer Lett. 2018, 437:13-24. doi:10.1016/j.canlet.2018.08.019
DOI: https://doi.org/10.1016/j.canlet.2018.08.019
Bengtsson A.M.; Jönsson G.; Magnusson C.; Salim T.; Axelsson C.; Sjölander A. The cysteinyl leukotriene 2 receptor contributes to all-trans retinoic acid-induced differentiation of colon cancer cells. BMC Cancer. 2013, 13:336. doi:10.1186/1471-2407-13-336
DOI: https://doi.org/10.1186/1471-2407-13-336
Barajas-Espinosa A.; Ochoa-Cortes F.; Moos M.P.; Ramirez F.D.; Vanner S.J.; Funk C.D. Characterization of the cysteinyl leuko-triene 2 receptor in novel expression sites of the gastrointestinal tract. Am J Pathol. 2011, 178(6):2682-2689. doi:10.1016/j.ajpath.2011.02.041
DOI: https://doi.org/10.1016/j.ajpath.2011.02.041
Magnusson C.; Mezhybovska M.; Lörinc E.; Fernebro E.; Nilbert M.; Sjölander A. Low expression of CysLT1R and high expres-sion of CysLT2R mediate good prognosis in colorectal cancer. Eur J Cancer. 2010, 46(4):826-835. doi:10.1016/j.ejca.2009.12.022
DOI: https://doi.org/10.1016/j.ejca.2009.12.022
Drost A.C.; Seitz G.; Boehmler A.; Funk M.; Norz K.P.; Zipfel A.; Xue X.; Kanz L.; Mohle R. The G protein-coupled receptor CysLT1 mediates chemokine-like effects and prolongs survival in chronic lymphocytic leukemia. Leuk Lymphoma. 2012, 53(4):665-673. doi:10.3109/10428194.2011.625578
DOI: https://doi.org/10.3109/10428194.2011.625578
Savari S.; Liu M.; Zhang Y.; Sime W.; Sjölander A. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer. PLoS One. 2013, 8(9):e73466. doi:10.1371/journal.pone.0073466
DOI: https://doi.org/10.1371/journal.pone.0073466
COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6 (na dzień: 16 czerwca 2022)
Aigner L.; Pietrantonio F.; Bessa de Sousa D.M.; Michael J.; Schuster D.; Reitsamer H.; Zerbe H.; Studnicka M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front Mol Biosci. 2020, 7:610132. doi:10.3389/fmolb.2020.610132
DOI: https://doi.org/10.3389/fmolb.2020.610132
Anderson R.; Theron A.J.; Gravett C.M.; Steel H.C.; Tintinger G.R.; Feldman C. Montelukast inhibits neutrophil pro-inflammatory activity by a cyclic AMP-dependent mechanism. Br J Pharmacol. 2009, 156(1):105-115. doi:10.1111/j.1476-5381.2008.00012.x
DOI: https://doi.org/10.1111/j.1476-5381.2008.00012.x
Dey M.; Singh R.K. Possible Therapeutic Potential of Cysteinyl Leukotriene Receptor Antagonist Montelukast in Treatment of SARS-CoV-2-Induced COVID-19. Pharmacology. 2021, 106(9-10):469-476. doi:10.1159/000518359
DOI: https://doi.org/10.1159/000518359
Trinh H.K.T.; Nguyen T.V.T.; Choi Y.; Park H.S.; Shin Y.S. The synergistic effects of clopidogrel with montelukast may be benefi-cial for asthma treatment. J Cell Mol Med. 2019, 23(5):3441-3450. doi:10.1111/jcmm.14239
DOI: https://doi.org/10.1111/jcmm.14239
May B.C.; Gallivan K.H. Levocetirizine and montelukast in the COVID-19 treatment paradigm. Int Immunopharmacol. 2022, 103:108412. doi:10.1016/j.intimp.2021.108412
DOI: https://doi.org/10.1016/j.intimp.2021.108412
Cardani A.; Boulton A.; Kim T.S.; Braciale T.J. Alveolar Macrophages Prevent Lethal Influenza Pneumonia By Inhibiting Infec-tion Of Type-1 Alveolar Epithelial Cells. PLoS Pathog. 2017, 13(1):e1006140. doi:10.1371/journal.ppat.1006140
DOI: https://doi.org/10.1371/journal.ppat.1006140
Wu C.; Liu Y.; Yang Y.; Zhang P.; Zhong W.; Wang Y.; Wang Q.; Xu Y.; Li M.; Li X.; Zheng M.; Chen L.; Li H. Analysis of ther-apeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. 2020, 10(5):766-788. doi:10.1016/j.apsb.2020.02.008
DOI: https://doi.org/10.1016/j.apsb.2020.02.008
Durdagi S.; Avsar T.; Orhan M.D.; Serhatli M.; Balcioglu B.K.; Ozturk H.U.; Kayabolen A.; Cetin Y.; Aydinlik S.; Bagci-Onder T.; Tekin S.; Demirci H.; Guzel M.; Akdemir A.; Calis S.; Oktay L.; Tolu I.; Butun Y.E.; Erdemoglu E.; Olkan A.; Tokay N.; Isik S.; Ozcan A.; Acar E.; Buyukkilic S.; Yumak Y. The neutralization effect of montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies. Mol Ther. 2022, 30(2):963-974. doi:10.1016/j.ymthe.2021.10.014
DOI: https://doi.org/10.1016/j.ymthe.2021.10.014
Khan A.R.; Misdary C.; Yegya-Raman N.; Kim S.; Narayanan N.; Siddiqui S.; Salgame P.; Radbel J.; Grotte F.D.; Michel C.; Mehnert J.; Hernandez C.; Braciale T.; Malhorta J.; Gentile M.A.; Jabbour S.K. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma. 2021, 1-7. doi:10.1080/02770903.2021.1881967
DOI: https://doi.org/10.21203/rs.3.rs-52430/v1
Thompson M.D.; Capra V.; Clunes M.T.; Rovati G.E.; Stankova J.; Maj M.C.; Duffy D.L. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Front Pharmacol. 2016, 7:299. doi:10.3389/fphar.2016.00299
DOI: https://doi.org/10.3389/fphar.2016.00299
Thompson M.D.; Cole D.E.C.; Capra V.; Siminovitch K.A.; Rovati G.E.; Burnham W.M.; Rana B.K. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol. 2014, 1175:189-242. doi:10.1007/978-1-4939-0956-8_9
DOI: https://doi.org/10.1007/978-1-4939-0956-8_9
Slater K.; Hoo P.S.; Buckley A.M.; Piulats J.M.; Villanueva A.; Portela A.; Kennedy B.N. Evaluation of oncogenic cysteinyl leu-kotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev. 2018, 37(2-3):335-345. doi:10.1007/s10555-018-9751-z
DOI: https://doi.org/10.1007/s10555-018-9751-z
Moore A.R.; Ceraudo E.; Sher J.J.; Guan Y.; Shoushtari A.; Chang M.T.; Zhang J.Q.; Walczak E.G.; Kazmi M.A.; Taylor B.S.; Hu-ber T.; Chi P.; Sakmar T.P.; Chen Y. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet. 2016, 48(6):675-680. doi:10.1038/ng.3549
DOI: https://doi.org/10.1038/ng.3549
Ceraudo E.; Horioka M.; Mattheisen J.M.; Hitchman T.D.; Moore A.R.; Kazmi M.A.; Chi P.; Chen Y.; Sakmar T.P.; Huber T. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J Biol Chem. 2021, 296:100163. doi:10.1074/jbc.RA120.015352
DOI: https://doi.org/10.1074/jbc.RA120.015352
Montuschi P.; Peters-Golden M.L. Leukotriene modifiers for asthma treatment. Clin Exp Allergy. 2010, 40(12):1732-1741. doi:10.1111/j.1365-2222.2010.03630.x
DOI: https://doi.org/10.1111/j.1365-2222.2010.03630.x
Akin-Bali D.F. Bioinformatics analysis of GNAQ, GNA11, BAP1, SF3B1,SRSF2, EIF1AX, PLCB4, and CYSLTR2 genes and their role in the pathogenesis of Uveal Melanoma. Ophthalmic Genet. 2021, 42(6):732-743. doi:10.1080/13816810.2021.1961280
DOI: https://doi.org/10.1080/13816810.2021.1961280
Nell R.J.; Menger N.V.; Versluis M.; Luyten G.P.; Verdijk R.M.; Madigan M.C.; Jager M.J.; van der Velden P. Involvement of mutant and wild-type CYSLTR2 in the development and progression of uveal nevi and melanoma. BMC Cancer. 2021, 21(1):164. doi:10.1186/s12885-021-07865-x
DOI: https://doi.org/10.1186/s12885-021-07865-x
Möller I.; Murali R.; Müller H.; Wiesner T.; Jackett L.A.; Scholz S.L.; Cosgarea I.; van de Nes J.; Sucker A.; Hillen .; Schilling B.; Paschen A.; Kutzner H.; Rutten A.; Bockers M.; Scolyer R.A.; Schadendorf D.; Griewank K.G. Activating cysteinyl leukotriene re-ceptor 2 (CYSLTR2) mutations in blue nevi. Mod Pathol. 2017, 30(3):350-356. doi:10.1038/modpathol.2016.201
DOI: https://doi.org/10.1038/modpathol.2016.201
Goto K.; Pissaloux D.; Paindavoine S.; Tirode F.; de la Fouchardière A. CYSLTR2-mutant Cutaneous Melanocytic Neoplasms Frequently Simulate “Pigmented Epithelioid Melanocytoma,” Expanding the Morphologic Spectrum of Blue Tumors: A Clinico-pathologic Study of 7 Cases. Am J Surg Pathol. 2019, 43(10):1368-1376. doi:10.1097/PAS.0000000000001299
DOI: https://doi.org/10.1097/PAS.0000000000001299
Brochu-Bourque A.; Véronneau S.; Rola-Pleszczynski M.; Stankova J. Differential signaling defects associated with the M201V polymorphism in the cysteinyl leukotriene type 2 receptor. J Pharmacol Exp Ther. 2011, 336(2):431-439. doi:10.1124/jpet.110.172411
DOI: https://doi.org/10.1124/jpet.110.172411
Cornejo-García J.A.; Perkins J.R.; Jurado-Escobar R.; Garcia-Martin E.; Agundez J.A.; Viguera E.; Perez-Sanchez N.; Blan-ca-Lopez N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol. 2016, 7:316. doi:10.3389/fphar.2016.00316
DOI: https://doi.org/10.3389/fphar.2016.00316
Ji T.; Lu T.; Qiu Y.; Li X.; Liu Y.; Tai J.; Guo Y.; Zhang J.; Wang S.; Zhao J.; Ni X.; Xu Z. The efficacy and safety of montelukast in children with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med. 2021, 78:193-201. doi:10.1016/j.sleep.2020.11.009
DOI: https://doi.org/10.1016/j.sleep.2020.11.009
Dixon E.G.; Rugg-Gunn C.E.; Sellick V.; Sinha I.P.; Hawcutt D.B. Adverse drug reactions of leukotriene receptor antagonists in children with asthma: a systematic review. BMJ Paediatr Open. 2021, 5(1):e001206. doi:10.1136/bmjpo-2021-001206
DOI: https://doi.org/10.1136/bmjpo-2021-001206
Okunishi K.; Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta. 2011, 1810(11):1096-1102. doi:10.1016/j.bbagen.2011.02.005
DOI: https://doi.org/10.1016/j.bbagen.2011.02.005
Dong X.; Wang L.; Huang X.; Liu T.; Wei E.; Du E.; Yang B.; Hu Y. Pharmacophore identification, synthesis, and biological evaluation of carboxylated chalcone derivatives as CysLT1 antagonists. Bioorg. Med. Chem. 2010, 18(15):5519-5527. doi:10.1016/j.bmc.2010.06.047
DOI: https://doi.org/10.1016/j.bmc.2010.06.047
Dong X.; Zhao Y.; Huang X.; Lin K.; Chen J.; Wei E.; Liu T.; Hu Y. Structure-based drug design using GPCR homology modeling: toward the discovery of novel selective CysLT2 antagonists. Eur J Med Chem. 2013, 62:754-763. doi:10.1016/j.ejmech.2013.01.041
DOI: https://doi.org/10.1016/j.ejmech.2013.01.041
Luginina A.; Gusach A.; Marin E.; Mishin E.; Brouillette R.; Popov P.; Shiriaeva A.; Besserer-Offroy E.; Longpre J.M.; Lyapina E.; Ishchenko A.; Patel N.; Polovinkin V.; Safronova N.; Bogorodskiy A.; Edelweiss E.; Hu H.; Weierstall U.; Liu W.; Batyuk A.; Gordeliy V.; Han G.W.; Sarret P.; Katritch V.; Borshchevskiy V.; Cherezov V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci Adv. 2019, 5(10):eaax2518. doi:10.1126/sciadv.aax2518
DOI: https://doi.org/10.1126/sciadv.aax2518
Gusach A.; Luginina A.; Marin E.; Brouillette R.L.; Besserer-Offroy E.; Longpre J.M.; Ishchenko A.; Popov P.; Patel N.; Fujimoto T.; Maruyama T.; Stauch B.; Ergasheva M.; Romanovskaia D.; Stepko A.; Kovalev K.; Shevtsov M.; Gordeily V.; Han G.W.; Kat-ritch V.; Borshchevskiy V.; Sarret P.; Mishin A.; Cherezov V. Structural basis of ligand selectivity and disease mutations in cyste-inyl leukotriene receptors. Nat Commun. 2019, 10(1):5573. doi:10.1038/s41467-019-13348-2
DOI: https://doi.org/10.1038/s41467-019-13348-2
Marin E.; Luginina A.; Gusach A.; Kovalev K.; Bukshdruker S.; Khorn P.; Polovinkin V.; Lyapina E.; Rogachev A.; Gordeliy V.; Mishin A.; Cherezov V.; Borshchevskiy V. Small-wedge synchrotron and serial XFEL datasets for Cysteinyl leukotriene GPCRs. Sci Data. 2020, 7(1):388. doi:10.1038/s41597-020-00729-2
DOI: https://doi.org/10.1038/s41597-020-00729-2