Adolfsson-Erici M., Petterson M., Parkkonen J., Sturve J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 2002, 46: 1485-1489
DOI: https://doi.org/10.1016/S0045-6535(01)00255-7
Bhargava H.N., Leonard P. A. Triclosan: applications and safety. Am. J. Infect Control.1996, 24: 209-218
DOI: https://doi.org/10.1016/S0196-6553(96)90017-6
Chuanchuen, R., Beinlich K., Hoang T. T., Becher A., Karkhoff-Schweizer R. R., Schweitzer H. P. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 2001, 45: 428-432
DOI: https://doi.org/10.1128/AAC.45.2.428-432.2001
Ciba speciality Chemicals. Value beyond chemistry. /www.cibasc.com/
Citizen Petition to the U. S. Food and Drug Administration (FDA) to Ban Triclosan. (2005)
Davies J. Inactivation of antibiotics and dissemination of resistance genes. Science 1994, 264: 375-382
DOI: https://doi.org/10.1126/science.8153624
Durbize E., Vigan M., Puzenat E. Spectrum of cross-photosensitization in 18 consecutive patients with contact photoallergy to ketoprofen: associated photoalergies to non-benzophenone-containing microbes. Contact Dermatitis, 2003, 48: 144-149
DOI: https://doi.org/10.1034/j.1600-0536.2003.00066.x
Fan F., Yan K., Wallis N. G., Reed S., Moore T. D., Rittenhouse S. F., DeWolf W. E. Jr., Huang J., McDevitt D., Miller W. H., Seefeld M. A., Newlander K. A., Jakas D. R., Head M. S., Payne D. J. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46: 3343-3347
DOI: https://doi.org/10.1128/AAC.46.11.3343-3347.2002
FDA. Glossary of Pesticide Chemicals. June 2005
Heath R. J., Li J., Roland G. E., Rock C. O. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J. Biol. Chem. 2000, 275: 4654-4659
DOI: https://doi.org/10.1074/jbc.275.7.4654
Hoang T. T., Schweizer H. P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 1999, 181: 5489-5497
DOI: https://doi.org/10.1128/JB.181.17.5489-5497.1999
Jones R. D., Jampani H. B, Newman J. L., Lee A. S. Triclosan: a review of effectiveness and safety in Heath care settings. Am. J. Infect. Control. 2000, 28: 184-196
DOI: https://doi.org/10.1067/mic.2000.102378
Latch D. E., Packer J. L., Stender B. L., VanOverbeke J., Arnold W. A., McNeil K. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin and oligomerization products. Environ. Toxicol. Chem. 2005, 24: 517-525.
DOI: https://doi.org/10.1897/04-243R.1
Levy C. W., Roujeinikovai A., Sedelnikova S., Baker P. J., Stuitje A. R., Slabas A. R., Rice D., Rafferty J. B. Molecular basis of triclosan activity. Nature, 1999, 398: 383-384
DOI: https://doi.org/10.1038/18803
McMurry L. M., McDermott P. F., Levy S. B. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob. Agents Chemother.1999, 43: 711-713
DOI: https://doi.org/10.1128/AAC.43.3.711
McMurry L. M., Oethinger M., Levy S. B. Triclosan targets lipid synthesis. Nature, 1998, 394: 531-532
DOI: https://doi.org/10.1038/28970
McMurry L. M., Oethinger M., Levy S. B. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 1998, 166: 305-309
DOI: https://doi.org/10.1111/j.1574-6968.1998.tb13905.x
Meade M. J., Waddell R. J., Callahan T. M. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 2001, 204: 45-48
DOI: https://doi.org/10.1111/j.1574-6968.2001.tb10860.x
Miller T. L., Larusso D. J., Walsh M. L,. Deinzer M. L. The acute toxicity of penta-hexa-, and heptachlorohydroxydiphenyl ethers in mice. J. Toxicol. Environ. Heath. 1983, 12: 245-253
DOI: https://doi.org/10.1080/15287398309530423
Perozzo R., Kuo M., Sidhu A. S, Valiyaveettil J. T., Bittman R., Jacobs. W.R. Jr. Fidock D. A, Sacchettini J.C. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl-acyl carrier protein reductase. J. Biol. Chem. 2002, 277: 13106-13114
DOI: https://doi.org/10.1074/jbc.M112000200
Qiu X., Janson Ch. A, Court R. J., Smyth M. G., Payne D. J., Abel-Meguid S.S. Molecular basis for triclosan activity involves a flipping loop in the active site. Protein Science, 1999, 8: 2529-2532
DOI: https://doi.org/10.1110/ps.8.11.2529
Randall L. P., Ridley A. M., Cooles S. W., Sharma M., Sayers A. R., Pumbwe L., Newell D. G., Piddock L. J., Woodward M.J. Prevalence of multiple antiboitic resistance in 443 Campylobacter spp. isolated from humans and animals. J. Antimicrob. Chemother. 2003, 52: 507-510
DOI: https://doi.org/10.1093/jac/dkg379
Randall L. P., Cooles S. W., Piddock L. J., Woodward M. J. Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J. Antimicrob. Chemother. 2004, 54:621-627.
DOI: https://doi.org/10.1093/jac/dkh376
Russell A. D. Whither triclosan? J. Antimicrob. Chemother. 2004, 53: 693-695
DOI: https://doi.org/10.1093/jac/dkh171
Sanchez P., Moreno E., Martinez J. L The biocie triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob. Agents Chemother. 2005, 49: 781-782
DOI: https://doi.org/10.1128/AAC.49.2.781-782.2005
Schmid M.B., Kaplan N. Reduced triclosan susceptibility in methicillin-resistance Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2004, 48: 1397-1399
DOI: https://doi.org/10.1128/AAC.48.4.1397-1399.2004
Suller M. T. E., Russell A. D. Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 46: 11-18
DOI: https://doi.org/10.1093/jac/46.1.11
Wammer K. H., Lapara T. M., McNeil K., Arnold W. A., Swackhamer D. L. Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations. Environ. Toxicol. Chem. 2006, 25: 1480-1486
DOI: https://doi.org/10.1897/05-384R.1
Wilson B. A., Orvos D. R., Versteeg D. J., Inauen J., Capdevielle M. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002, 21: 1338-1349
DOI: https://doi.org/10.1002/etc.5620210703
Yazdankhah, S. P., Scheie A. A., Hoiby E. A., Lunestad B. T, Heir E., Fotland T. O., Naterstad K., Kruse H. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 2006,12: 83-90
DOI: https://doi.org/10.1089/mdr.2006.12.83