Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; i in. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203-234, DOI:10.1016/S0140-6736(23)01301-6.
DOI: https://doi.org/10.1016/S0140-6736(23)01301-6
Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med. Sci. Sports. Exerc. 2022, 54, 353-368. DOI:10.1249/MSS.0000000000002800.
DOI: https://doi.org/10.1249/MSS.0000000000002800
Bertoluci, M.C.; Rocha, V.Z. Cardiovascular risk assessment in patients with diabetes. Diabetol. Metab. Syndr. 2017, 9, Art. No: 25. DOI:10.1186/S13098-017-0225-1.
DOI: https://doi.org/10.1186/s13098-017-0225-1
Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, Art. No: 7213. DOI:10.3390/MOLECULES26237213.
DOI: https://doi.org/10.3390/molecules26237213
Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Giau, V. Van Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, Art. No: 3165. DOI:10.3390/IJMS21093165.
DOI: https://doi.org/10.3390/ijms21093165
Yu, J.; Lee, S.H.; Kim, M.K. Recent Updates to Clinical Practice Guidelines for Diabetes Mellitus. Endocrinol. Metab. 2022, 37, 26-37. DOI:10.3803/ENM.2022.105.
DOI: https://doi.org/10.3803/EnM.2022.105
Cowie, M.R.; Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nature reviews. Cardiology 2020, 17, 761–772. DOI:10.1038/S41569-020-0406-8.
DOI: https://doi.org/10.1038/s41569-020-0406-8
Herrera-González, A.; Núñez-López, G.; Núñez-Dallos, N.; Amaya-Delgado, L.; Sandoval, G.; Remaud-Simeon, M.; Morel, S.; Arrizon, J.; Hernández, L. Enzymatic synthesis of phlorizin fructosides. Enzyme Microb. Technol. 2021, 147, Art. No: 109783. DOI:10.1016/J.ENZMICTEC.2021.109783.
DOI: https://doi.org/10.1016/j.enzmictec.2021.109783
Shubrook, J.H.; Bokaie, B.B.; Adkins, S.E. Empagliflozin in the treatment of type 2 diabetes: Evidence to date. Drug Des. Devel. Ther. 2015, 9, 5793–5803. DOI:10.2147/DDDT.S69926.
DOI: https://doi.org/10.2147/DDDT.S69926
Chawla, G.; Chaudhary, K.K. A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab. Syndr. 2019, 13, 2001–2008. DOI:10.1016/J.DSX.2019.04.035.
DOI: https://doi.org/10.1016/j.dsx.2019.04.035
Packer, M. Dual SGLT1 and SGLT2 inhibitor sotagliflozin achieves FDA approval: landmark or landmine? Nat. Cardiovasc. Res. 2, 2023, 705–707. DOI: 10.1038/s44161-023-00306-x
DOI: https://doi.org/10.1038/s44161-023-00306-x
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchet, D.; Bluhmki, E.; Hantel, S.; Matheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; i in. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Eng. J. Med 2015, 373, 17–18. DOI:10.1056/NEJMOA1504720.
DOI: https://doi.org/10.1056/NEJMoa1504720
Muskiet, M.H.A.; van Raalte, D.H.; van Bommel, E.; Smits, M.M.; Tonneijck, L. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015, 3, 928–929. DOI:10.1016/S2213-8587(15)00424-6.
DOI: https://doi.org/10.1016/S2213-8587(15)00424-6
Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule. J. Am. Soc. Nephrol. 2011, 22, 104-112. DOI:10.1681/ASN.2010030246.
DOI: https://doi.org/10.1681/ASN.2010030246
Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503–528. DOI:10.1146/annurev-physiol-031620-095920.
DOI: https://doi.org/10.1146/annurev-physiol-031620-095920
Chao, E.C.; Henry, R.R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 2010, 9, 551–559. DOI:10.1038/nrd3180.
DOI: https://doi.org/10.1038/nrd3180
Qiu, M.; Ding, L.L.; Zhang, M.; Zhou, H.R. Safety of four SGLT2 inhibitors in three chronic diseases: A meta-analysis of large randomized trials of SGLT2 inhibitors. Diab. Vasc. Dis. Res. 2021, 18. DOI:10.1177/14791641211011016.
DOI: https://doi.org/10.1177/14791641211011016
Ujjawal, A.; Schreiber, B.; Verma, A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidneytransplant recipients: what is the evidence? Ther. Adv. Endocrinol. Metab. 2022, 13. DOI:10.1177/20420188221090001.
DOI: https://doi.org/10.1177/20420188221090001
Yu, A.S.; Hirayama, B.A.; Timbol, G.; Liu, J.; Diez-Sampedro, A.; Kepe, V.; Satyamurthy, N.; Huang, S.C.; Wright, E.M.; Barrio, J.R. Regional distribution of SGLT activity in rat brain in vivo. Am. J. Physiol 2013, 304. DOI:10.1152/AJPCELL.00317.2012.
DOI: https://doi.org/10.1152/ajpcell.00317.2012
Shah, K.; DeSilva, S.; Abbruscato, T. The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease. Int. J. Mol. Sci. 2012, 13, Art. No: 12629. DOI:10.3390/IJMS131012629.
DOI: https://doi.org/10.3390/ijms131012629
Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. DOI:10.1152/PHYSREV.00055.2009.
DOI: https://doi.org/10.1152/physrev.00055.2009
Nguyen, T.; Wen, S.; Gong, M.; Yuan, X.; Xu, D.; Wang, C.; Jin, J.; Zhou, L. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabet. Met. Synd. Ob. 2020, 13, 2781–2799. DOI:10.2147/DMSO.S258593.
DOI: https://doi.org/10.2147/DMSO.S258593
Enerson, B.E.; Drewes, L.R. The rat blood-brain barrier transcriptome. J. Cereb. Blood Flow Meta. 2006, 26, 959–973. DOI:10.1038/SJ.JCBFM.9600249.
DOI: https://doi.org/10.1038/sj.jcbfm.9600249
Koepsell, H. Glucose transporters in brain in health and disease. Pflug. Arch. 2020, 472, 1299–1343. DOI:10.1007/S00424-020-02441-X.
DOI: https://doi.org/10.1007/s00424-020-02441-x
Oerter, S.; Förster, C.; Bohnert, M. Validation of sodium/glucose cotransporter proteins in human brain as a potential marker for temporal narrowing of the trauma formation. Int. J. Legal Med. 2019, 133, 1107–1114. DOI:10.1007/S00414-018-1893-6.
DOI: https://doi.org/10.1007/s00414-018-1893-6
Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci. 2016, 130, 159–169. DOI:10.1016/J.JPHS.2016.02.003.
DOI: https://doi.org/10.1016/j.jphs.2016.02.003
Cinti, F.; Moffa, S.; Impronta, F.; Cefalo, C.M.A.; Sun, V.A.; Sorice, G.; Mezza, T.; Giaccari, A. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des. Devel. Ther. 2017, 11, 2905. DOI:10.2147/DDDT.S114932.
DOI: https://doi.org/10.2147/DDDT.S114932
Malhotra, A.; Kudyar, S.; Gupta, A.K.; Kudyar, R.P.; Malhotra, P. Sodium glucose co-transporter inhibitors – A new class of old drugs. Int. J. Appl. Basic Med. Res. 2015, 5, 161. DOI:10.4103/2229-516X.165363.
DOI: https://doi.org/10.4103/2229-516X.165363
Zhang, J.; Chen, C.; Hua, S.; Liao, H.; Wang, M.; Xiong, Y.; Cao, F. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 2017, 124, 41–47. DOI:10.1016/J.DIABRES.2016.10.024.
DOI: https://doi.org/10.1016/j.diabres.2016.10.024
Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106. DOI:10.2174/1570159X18666200528142429.
DOI: https://doi.org/10.2174/1570159X18666200528142429
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577-1590. DOI:10.1016/S0140-6736(20)32205-4.
DOI: https://doi.org/10.1016/S0140-6736(20)32205-4
Jasleen, B.; Vishal, G.K.; Sameera, M.; Fahad, M.; Brendan, O.; Deion, S.; Pemminati, S. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Benefits Versus Risk. Cureus 2023, 15, Art. No: e33939. DOI:10.7759/CUREUS.33939.
DOI: https://doi.org/10.7759/cureus.33939
Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.J.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol. 2014, 13, 148. DOI:10.1186/S12933-014-0148-1.
DOI: https://doi.org/10.1186/s12933-014-0148-1
Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, Art. No: 4. DOI:10.1186/S40035-022-00279-0.
DOI: https://doi.org/10.1186/s40035-022-00279-0
Jha, D.; Bakker, E.N.T.P.; Kumar, R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer’s disease. J. Neurochem. 2023, 00, 1–25. DOI:10.1111/JNC.15788.
DOI: https://doi.org/10.1111/jnc.15788
Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; i in. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 2020, 11, Art. No: 2127. DOI:10.1038/S41467-020-15983-6.
DOI: https://doi.org/10.1038/s41467-020-15983-6
Barrett, T.J. Macrophages in Atherosclerosis Regression. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 20–33. DOI:10.1161/ATVBAHA.119.312802.
DOI: https://doi.org/10.1161/ATVBAHA.119.312802
Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine 2017, 20, 137–149. DOI:10.1016/j.ebiom.2017.05.028.
DOI: https://doi.org/10.1016/j.ebiom.2017.05.028
Miyachi, Y.; Tsuchiya, K.; Shiba, K.; Mori, K.; Komiya, C.; Ogasawara, N.; Ogawa, Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci. Rep. 2018, 8, 1–13. DOI:10.1038/s41598-018-34305-x.
DOI: https://doi.org/10.1038/s41598-018-34305-x
Erichsen, J.; Craft, S. Targeting immunometabolic pathways for combination therapy in Alzheimer’s disease. Alzheimers Dement. (N Y), 2023, 9, Art. No: e12423. DOI: 10.1002/TRC2.12423
DOI: https://doi.org/10.1002/trc2.12423
Wium-Andersen, I.K.; Osler, M.; Jørgensen, M.B.; Rungby, J.; Wium-Andersen, M.K. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case-control study. Eur. J. Endocrinol. 2019, 181, 499–507. DOI:10.1530/EJE-19-0259.
DOI: https://doi.org/10.1530/EJE-19-0259
Avgerinos, K.I.; Mullins, R.J.; Vreones, M.; Mustapic, M.; Chen, Q.; Melvin, D.; Kapogiannis, D.; Egan, J.M. Empagliflozin Induced Ketosis, Upregulated IGF-1/Insulin Receptors and the Canonical Insulin Signaling Pathway in Neurons, and Decreased the Excitatory Neurotransmitter Glutamate in the Brain of Non-Diabetics. Cells 2022, 11, Art. No: 3372 DOI:10.3390/CELLS11213372.
DOI: https://doi.org/10.3390/cells11213372
Sȩdzikowska, A.; Szablewski, L. Insulin and Insulin Resistance in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, Art. No: 9987. DOI:10.3390/IJMS22189987.
DOI: https://doi.org/10.3390/ijms22189987
Kullmann, S.; Hummel, J.; Wagner, R.; Dannecker, C.; Vosseler, A.; Fritsche, L.; Veit, R.; Kantartzis, K.; Machann, J.; Birkenfeld, A.L.; i in. Empagliflozin Improves Insulin Sensitivity of the Hypothalamus in Humans With Prediabetes: A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial. Diabetes Care 2022, 45, 398–406. DOI:10.2337/DC21-1136.
DOI: https://doi.org/10.2337/dc21-1136
Zhao, Y.; Zhang, X.; Chen, X.; Wei, Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int. J. Mol. Med. 2022, 49, 15. DOI:10.3892/IJMM.2021.5070.
DOI: https://doi.org/10.3892/ijmm.2021.5070
Orellana-Urzúa, S.; Rojas, I.; Líbano, L.; Rodrigo, R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr. Pharm. Des. 2020, 26, 4246–4260. DOI:10.2174/1381612826666200708133912.
DOI: https://doi.org/10.2174/1381612826666200708133912
Abdel-latif, R.G.; Rifaai, R.A.; Amin, E.F. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1α/VEGF signaling pathway. Arch. Pharm. Res. 2020, 43, 514–525. DOI:10.1007/S12272-020-01237-Y.
DOI: https://doi.org/10.1007/s12272-020-01237-y
Zheng, J.; Chen, P.; Zhong, J.; Cheng, Y.; Chen, H.; He, Y.; Chen, C. HIF-1α in myocardial ischemia-reperfusion injury. Mol. Med. Rep. 2021, 23, DOI:10.3892/MMR.2021.11991.
DOI: https://doi.org/10.3892/mmr.2021.11991
Xing, J.; Lu, J. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia. Cell. Pchysiol. Biochem. 2016, 39, 511–520. DOI:10.1159/000445643.
DOI: https://doi.org/10.1159/000445643
Al Hamed, F.A.; Elewa, H. Potential Therapeutic Effects of Sodium Glucose-linked Cotransporter 2 Inhibitors in Stroke. Clin. Ther. 2020, 42, e242–e249. DOI:10.1016/j.clinthera.2020.09.008.
DOI: https://doi.org/10.1016/j.clinthera.2020.09.008
Moon, S.; Chang, M.S.; Koh, S.H.; Choi, Y.K. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int. J. Mol. Sci. 2021, 22, Art. No: 8543. DOI:10.3390/IJMS22168543.
DOI: https://doi.org/10.3390/ijms22168543
Wiciński, M.; Wódkiewicz, E.; Górski, K.; Walczak, M.; Malinowski, B. Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer’s Disease and Ischemia-Related Brain Injury. Pharmaceuticals 2020, 13 (11), Art. No: 379. DOI:10.3390/PH13110379.
DOI: https://doi.org/10.3390/ph13110379
Geiseler, S.J.; Morland, C. The Janus Face of VEGF in Stroke. Int. J. Mol. Sci. 2018, 19, Art. No: 1362. DOI:10.3390/IJMS19051362.
DOI: https://doi.org/10.3390/ijms19051362
Chiarotti, F.; Venerosi, A. Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates Since 2014. Brain Sci. 2020, 10, 274, DOI:10.3390/BRAINSCI10050274.
DOI: https://doi.org/10.3390/brainsci10050274
Wang, L.; Wang, B.; Wu, C.; Wang, J.; Sun, M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int. J. Mol. Sci. 2023, 24, DOI:10.3390/IJMS24031819.
DOI: https://doi.org/10.3390/ijms24031819
Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; i in. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. DOI:10.1002/AUR.239.
DOI: https://doi.org/10.1002/aur.239
Jayaprakash, P.; Isaev, D.; Shabbir, W.; Lorke, D.E.; Sadek, B.; Oz, M. Curcumin Potentiates α7 Nicotinic Acetylcholine Receptors and Alleviates Autistic-Like Social Deficits and Brain Oxidative Stress Status in Mice. Int. J. Mol. Sci. 2021, 22, Art. No: 7251. DOI:10.3390/IJMS22147251.
DOI: https://doi.org/10.3390/ijms22147251
Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A. V.; Hosnedlová, B.; Kizek, R.; i in. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. DOI:10.1007/S12035-019-01742-2.
DOI: https://doi.org/10.1007/s12035-019-01742-2
Nakhal, M.M.; Aburuz, S.; Sadek, B.; Akour, A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022, 27, Art. No: 7174. DOI:10.3390/MOLECULES27217174.
DOI: https://doi.org/10.3390/molecules27217174
Nakhal, M.M.; Jayaprakash, P.; Aburuz, S.; Sadek, B.; Akour, A. Canagliflozin Ameliorates Oxidative Stress and Autistic-like Features in Valproic-Acid-Induced Autism in Rats: Comparison with Aripiprazole Action. Pharmaceuticals 2023, 16, 769, DOI:10.3390/PH16050769.
DOI: https://doi.org/10.3390/ph16050769