1. Ahmad, Z.; Özdemir, B.; Sevindik, M.; Eraslan, E.C.; Selamoglu, Z.; Bal, C. Phenolic compound and antioxidant potential of Hebeloma sinapizans mushroom. AgroLife Sci. J. 2023, 12(2),12-17. http://dx.doi.org/10.17930/AGL202322
2. Özcandır, A.; Mohammed, F.S.; Sevindik, M.; Aykurt, C.; Selamoglu, Z.; Akgül, H. Phenolic composition, total antioxidant, antiradical and antimicrobial potential of endemic Glaucium Alakirensis. Sigma J. Eng. Nat. Sci. 2024, 42(1),42-48.
3. Korkmaz, N.; Dayangaç, A.; Sevindik, M. Antioxidant, antimicrobial and antiproliferative activities of Galium aparine. J. Fac. Pharm. Ankara 2021, 45(3), 554-564. http://dx.doi.org/10.33483/jfpau.977776
4. Mohammed, F.S.; Sevindik, M.; Uysal, I.; Sevindik, E.; Akgül, H. A natural material for suppressing the effects of oxidative stress: biological activities of Alcea kurdica. Biol. Bull. 2022, 49 (Suppl 2), S59-S66. http://dx.doi.org/10.1134/S1062359022140102
5. Doğan, M.; Mohammed, F.S.; Uysal, İ.; Mencik, K.; Kına, E.; Pehlivan, M.; Sevindik, M. Total antioxidant status, antimicrobial and antiproliferative potentials of Viola odorata (Fragrant Violet). J. Fac. Pharm. Ankara 2023, 47(3), 784-791. https://doi.org/10.33483/jfpau.1161440
6. Kalkan, M.; Aygan, A.; Çömlekçioglu, N.; Çömlekçioğlu, U. Olea europaea Yapraklarının Bazı Biyoaktif Özelliklerinin Araştırılması, Antimikrobiyal ve Enzim İnhibisyon Etkinliğinin İncelenmesi. Turkish JAF Sci. Tech. 2023, 11(3), 496-504. http://dx.doi.org/10.24925/turjaf.v11i3.496-504.5828
7. El-Chaghaby, G.A.; Mohammed, F.S.; Rashad, S.; Uysal, I.; Koçer, O.; Lekesiz, Ö.; Doğan, M.; Şabik, A.E.; Sevindik, M. Genus Hypericum: General Properties, Chemical Contents and Biological Activities. Egypt. J. Bot. 2024, 64(1), 1-26. https://dx.doi.org/10.21608/ejbo.2023.217116.2378
8. Mohammed, F.S.; Sevindik, M.; Uysal, İ.; Çesko, C.; Koraqi, H. Chemical Composition, Biological Activities, Uses, Nutritional and Mineral Contents of Cumin (Cuminum cyminum). Measurement: Food 2024, 100157. https://doi.org/10.1016/j.meafoo.2024.100157
9. Seelinger, G.; Merfort, I.; Wölfle, U.; Schempp, C.M. Anti-carcinogenic effects of the flavonoid luteolin. Molecules 2008, 13(10), 2628-2651. https://doi.org/10.3390/molecules13102628
10. Gould, K.S.; Lister, C. Flavonoid functions in plants, in Flavonoids: Chemistry, biochemistry and applications. 2006, CRC Press: United States of America. p. 397-441.
11. Owen, R.W.; Haubner, R.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem. Toxicol. 2003, 41(5), 703-717. https://doi.org/10.1016/s0278-6915(03)00011-5
12. López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9(1), 31-59. https://doi.org/10.2174/138955709787001712
13. Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 2011, 91(4), 949-956. https://doi.org/10.1007/s00253-011-3449-2
14. Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. https://doi.org/10.3389/fpls.2012.00222
15. Marín, L.; Gutiérrez-Del-Río, I.; Yagüe, P.; Manteca, Á.; Villar, C.J.; Lombó, F. De Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and Production Improvement by Feeding and Spore Conditioning. Front. Microbiol., 2017, 8, 921. https://doi.org/10.3389/fmicb.2017.00921
16. Liao, P.H.; Hung, L.M.; Chen, Y.H.; Kuan, Y.H.; Zhang, F.B.; Lin, R.H.; Shih, H.C.; Tsai, S.K.; Huang, S.S. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ. J. 2011, 75(2), 443-450. https://doi.org/10.1253/circj.cj-10-0381
17. Sun, D.; Huang, J.; Zhang, Z.; Gao, H.; Li, J.; Shen, M.; Cao, F.; Wang, H. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS One 2012, 7(3), e33491. https://doi.org/10.1371/journal.pone.0033491
18. Wang, G.; Li, W.; Lu, X.; Bao, P.; Zhao, X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J. Diabetes Complications 2012, 26(4), 259-265. https://doi.org/10.1016/j.jdiacomp.2012.04.007
19. Xu, T.; Li, D.; Jiang, D. Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients 2012, 4(12), 2008-2019. https://doi.org/10.3390/nu4122008
20. Nekohashi, M.; Ogawa, M.; Ogihara, T.; Nakazawa, K.; Kato, H.; Misaka, T.; Abe, K.; Kobayashi, S. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats. PLoS One 2014, 9(5), e97901. https://doi.org/10.1371/journal.pone.0097901
21. Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid that Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front. Pharmacol. 2017, 8, 692. https://doi.org/10.3389/fphar.2017.00692
22. Dirscherl, K.; Karlstetter, M.; Ebert, S.; Kraus, D.; Hlawatsch, J.; Walczak, Y.; Moehle, C.; Fuchshofer, R.; Langmann, T. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation. 2010, 7, 3. https://doi.org/10.1186/1742-2094-7-3
23. Theoharides, T.C.; Asadi, S.; Panagiotidou, S. A case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. Int. J. Immunopathol. Pharmacol. 2012, 25(2), 317-323. https://doi.org/10.1177/039463201202500201
24. Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.J.; Obregon, D.; Giunta, B.; Borlongan, C.V.; Sanberg, P.R.; Tan, J. Luteolin reduces Alzheimer's disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci. 2014, 15(1), 895-904. https://doi.org/10.3390/ijms15010895
25. Xu, J.; Wang, H.; Ding, K.; Zhang, L.; Wang, C.; Li, T.; Wei, W.; Lu, X. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway. Free Radic. Biol. Med. 2014, 71, 186-195. https://doi.org/10.1016/j.freeradbiomed.2014.03.009
26. Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl. Psychiatry 2015, 5(9), e647. https://doi.org/10.1038/tp.2015.142
27. Kwon, Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp. Gerontol. 2017, 95, 39-43. https://doi.org/10.1016/j.exger.2017.05.014
28. Daily, J.W.; Kang, S.; Park, S. Protection against Alzheimer's disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors 2021, 47(2), 218-231. https://doi.org/10.1002/biof.1703
29. Chung, J.G.; Hsia, T.C.; Kuo, H.M.; Li, Y.C.; Lee, Y.M.; Lin, S.S.; Hung, C.F. Inhibitory actions of luteolin on the growth and arylamine N-acetyltransferase activity in strains of Helicobacter pylori from ulcer patients. Toxicol. In Vitro 2001, 15(3), 191-198. https://doi.org/10.1016/s0887-2333(01)00015-7
30. Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J. Nutr. Biochem. 2010, 21(10), 941-947. https://doi.org/10.1016/j.jnutbio.2009.07.009
31. Liu, Y.; Fu, X.; Lan, N.; Li, S.; Zhang, J.; Wang, S.; Li, C.; Shang, Y.; Huang, T.; Zhang, L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 2014, 267, 178-188. https://doi.org/10.1016/j.bbr.2014.02.040
32. Zhang, L.; Han, Y.J.; Zhang, X.; Wang, X.; Bao, B.; Qu, W.; Liu, J. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages. Diabetologia 2016, 59(10), 2219-2228. https://doi.org/10.1007/s00125-016-4039-8
33. Li, B.; Du, P.; Du, Y.; Zhao, D.; Cai, Y.; Yang, Q.; Guo, Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci. 2021, 269, 119008. https://doi.org/10.1016/j.lfs.2020.119008
34. Crupi, R.; Paterniti, I.; Ahmad, A.; Campolo, M.; Esposito, E.; Cuzzocrea, S. Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression. CNS Neurol. Disord. Drug Targets 2013, 12(7), 989-1001. https://doi.org/10.2174/18715273113129990084
35. Impellizzeri, D.; Esposito, E.; Di Paola, R.; Ahmad, A.; Campolo, M.; Peli, A.; Morittu, V.M.; Britti, D.; Cuzzocrea, S. Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice. Arthritis Res. Ther. 2013, 15(6), R192. https://doi.org/10.1186/ar4382
36. Mohammed, F.S.; Korkmaz, N.; Doğan, M.; Şabik, A.E.; Sevindik, M. Some medicinal properties of Glycyrrhiza glabra (Licorice). J. Fac. Pharm. Ankara 2021, 45(3), 524-534. https://doi.org/10.33483/jfpau.979200
37. Cai, Q.; Rahn, R.O.; Zhang, R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997, 119(1), 99-107. https://doi.org/10.1016/s0304-3835(97)00261-9
38. Habtemariam, S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells. J. Nat. Prod. 1997, 60(8), 775-778. https://doi.org/10.1021/np960581z
39. Ko, F.N.; Chu, C.C.; Lin, C.N.; Chang, C.C.; Teng, C.M. Isoorientin-6"-O-glucoside, a water-soluble antioxidant isolated from Gentiana arisanensis. Biochim. Biophys. Acta 1998, 1389(2), 81-90. https://doi.org/10.1016/s0005-2760(97)00157-4
40. Cheng, I.F.; Breen, K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals 2000, 13(1), 77-83. https://doi.org/10.1023/a:1009229429250
41. Sato, Y.; Suzaki, S.; Nishikawa, T.; Kihara, M.; Shibata, H.; Higuti, T. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2000, 72(3), 483-488. https://doi.org/10.1016/s0378-8741(00)00265-8
42. Xu, H.X.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res. 2001, 15(1), 39-43. https://doi.org/10.1002/1099-1573(200102)15:1%3C39::aid-ptr684%3E3.0.co;2-r
43. Yamamoto, H.; Ogawa, T. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 2002, 66(4), 921-924. https://doi.org/10.1271/bbb.66.921
44. Ueda, H.; Yamazaki, C.; Yamazaki, M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 2002, 25(9), 1197-1202. https://doi.org/10.1248/bpb.25.1197
45. Lemańska, K.; van der Woude, H.; Szymusiak, H.; Boersma, M.G.; Gliszczyńska-Swigło, A.; Rietjens, I.M.; Tyrakowska, B. The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin--a mechanistic insight. Free Radic. Res. 2004, 38(6), 639-647. https://doi.org/10.1080/10715760410001694062
46. Qiusheng, Z.; Xiling, S.; Xubo; Meng, S.; Changhai, W. Protective effects of luteolin-7-glucoside against liver injury caused by carbon tetrachloride in rats. Pharmazie 2004, 59(4), 286-289.
47. Horváthová, K.; Chalupa, I.; Sebová, L.; Tóthová, D.; Vachálková, A. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutat. Res. 2005, 565(2), 105-112. https://doi.org/10.1016/j.mrgentox.2004.08.013
48. Manju, V.; Balasubramaniyan, V.; Nalini, N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine challenge. Cell. Mol. Biol. Lett. 2005, 10(3), 535-551.
49. Matsuo, M.; Sasaki, N.; Saga, K.; Kaneko, T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol. Pharm. Bull. 2005, 28(2), 253-259. https://doi.org/10.1248/bpb.28.253
50. Tshikalange, T.E.; Meyer, J.J.; Hussein, A.A. Antimicrobial activity, toxicity and the isolation of a bioactive compound from plants used to treat sexually transmitted diseases. J. Ethnopharmacol. 2005, 96(3), 515-519. https://doi.org/10.1016/j.jep.2004.09.057
51. Samy, R.P.; Gopalakrishnakone, P.; Ignacimuthu, S. Anti-tumor promoting potential of luteolin against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Chem. Biol. Interact. 2006, 164(1-2), 1-14. https://doi.org/10.1016/j.cbi.2006.08.018
52. Sousa, A.; Ferreira, I.C.; Calhelha, R.; Andrade, P.B.; Valentão, P.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolics and antimicrobial activity of traditional stoned table olives 'alcaparra'. Bioorg. Med. Chem. 2006, 14(24), 8533-8538. https://doi.org/10.1016/j.bmc.2006.08.027
53. Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12(5), 1153-1162. https://doi.org/10.3390/12051153
54. Ju, W.; Wang, X.; Shi, H.; Chen, W.; Belinsky, S.A.; Lin, Y. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol. Pharmacol. 2007, 71(5), 1381-1388. https://doi.org/10.1124/mol.106.032185
55. Lim, J.H.; Park, H.S.; Choi, J.K.; Lee, I.S.; Choi, H.J. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Arch. Pharm. Res. 2007, 30(12), 1590-1598. https://doi.org/10.1007/bf02977329
56. Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8(7), 634-646.
57. Ashokkumar, P.; Sudhandiran, G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed. Pharmacother. 2008, 62(9), 590-597.
58. Yang, S.F.; Yang, W.E.; Chang, H.R.; Chu, S.C.; Hsieh, Y.S. Luteolin induces apoptosis in oral squamous cancer cells. J. Dent. Res. 2008, 87(4), 401-406. https://doi.org/10.1177/154405910808700413
59. Lv, P.C.; Li, H.Q.; Xue, J.Y.; Shi, L.; Zhu, H.L. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur. J. Med. Chem. 2009, 44(2), 908-914. https://doi.org/10.1016/j.ejmech.2008.01.013
60. Cai, X.; Ye, T.; Liu, C.; Lu, W.; Lu, M.; Zhang, J.; Wang, M.; Cao, P. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. In Vitro 2011, 25(7), 1385-1391. https://doi.org/10.1016/j.tiv.2011.05.009
61. Funakoshi-Tago, M.; Nakamura, K.; Tago, K.; Mashino, T.; Kasahara, T. Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int. Immunopharmacol. 2011, 11(9), 1150-1159. https://doi.org/10.1016/j.intimp.2011.03.012
62. Kim, T.H.; Jung, J.W.; Ha, B.G.; Hong, J.M.; Park, E.K.; Kim, H.J.; Kim, S.Y. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J. Nutr. Biochem. 2011, 22(1), 8-15. https://doi.org/10.1016/j.jnutbio.2009.11.002
63. Lee, E.J.; Oh, S.Y.; Sung, M.K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol. 2012, 50(11), 4136-4143. https://doi.org/10.1016/j.fct.2012.08.025
64. El Omri, A.; Han, J.; Kawada, K.; Ben Abdrabbah, M.; Isoda, H. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways. Brain Res. 2012, 1437, 16-25. https://doi.org/10.1016/j.brainres.2011.12.019
65. Puhl, A.C.; Bernardes, A.; Silveira, R.L.; Yuan, J.; Campos, J.L.; Saidemberg, D.M.; Palma, M.S.; Cvoro, A.; Ayers, S.D.; Webb, P.; Reinach, P.S.; Skaf, M.S.; Polikarpov, I. Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Mol. Pharmacol. 2012, 81(6), 788-799. https://doi.org/10.1124/mol.111.076216
66. Sun, G.B.; Sun, X.; Wang, M.; Ye, J.X.; Si, J.Y.; Xu, H.B.; Meng, X.B.; Qin, M.; Sun, J.; Wang, H.W.; Sun, X.B. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression. Toxicol. Appl. Pharmacol. 2012, 265(2), 229-240. https://doi.org/10.1016/j.taap.2012.10.002
67. Yan, J.; Wang, Q.; Zheng, X.; Sun, H.; Zhou, Y.; Li, D.; Lin, Y.; Wang, X. Luteolin enhances TNF-related apoptosis-inducing ligand's anticancer activity in a lung cancer xenograft mouse model. Biochem. Biophys. Res. Commun. 2012, 417(2), 842-846. https://doi.org/10.1016/j.bbrc.2011.12.055
68. George, V.C.; Naveen Kumar, D.R.; Suresh, P.K.; Kumar, S.; Kumar, R.A. Comparative studies to evaluate relative in vitro potency of luteolin in inducing cell cycle arrest and apoptosis in HaCaT and A375 cells. Asian Pac. J. Cancer Prev. 2013, 14(2), 631-637. https://doi.org/10.7314/apjcp.2013.14.2.631
69. Park, C.M.; Song, Y.S. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 2013, 7(6), 423-429. https://doi.org/10.4162/nrp.2013.7.6.423
70. Aneknan, P.; Kukongviriyapan, V.; Prawan, A.; Kongpetch, S.; Sripa, B.; Senggunprai, L. Luteolin arrests cell cycling, induces apoptosis and inhibits the JAK/STAT3 pathway in human cholangiocarcinoma cells. Asian Pac. J. Cancer Prev. 2014, 15(12), 5071-5076. https://doi.org/10.3892/ol.2021.12452
71. Choi, J.S.; Islam, M.N.; Ali, M.Y.; Kim, Y.M.; Park, H.J.; Sohn, H.S.; Jung, H.A. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharm. Res. 2014, 37(10), 1354-1363. https://doi.org/10.1007/s12272-014-0351-3
72. Hanchinalmath, J.V.; Londonkar, R. Cytotoxic and apoptosis-inducing effect of luteolin isolated from Feronia limonia on HepG2 cells. Biolife J. 2014, 2, 1287-1292.
73. Jeon, I.H.; Kim, H.S.; Kang, H.J.; Lee, H.S.; Jeong, S.I.; Kim, S.J.; Jang, S.I. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 2014, 19(6), 6941-6951. https://doi.org/10.3390/molecules19066941
74. Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res. 2014, 7(1), 65-73. https://doi.org/10.1158/1940-6207.capr-13-0230
75. Shen, X.F.; Ren, L.B.; Teng, Y.; Zheng, S.; Yang, X.L.; Guo, X.J.; Wang, X.Y.; Sha, K.H.; Li, N.; Xu, G.Y.; Tian, H.W.; Wang, X.Y.; Liu, X.K.; Li, J.; Huang, N. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation. Food Chem. Toxicol. 2014, 72, 204-211. https://doi.org/10.3390/biomedicines11040999
76. Fan, W.; Qian, S.; Qian, P.; Li, X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016, 220, 112-116. https://doi.org/10.1016/j.virusres.2016.04.021
77. Kasala, E.R.; Bodduluru, L.N.; Barua, C.C.; Gogoi, R. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed. Pharmacother. 2016, 82, 568-577. https://doi.org/10.1016/j.biopha.2016.05.042
78. Xiong, J.; Wang, K.; Yuan, C.; Xing, R.; Ni, J.; Hu, G.; Chen, F.; Wang, X. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int. J. Mol. Med. 2017, 39(1), 113-125. https://doi.org/10.3892/ijmm.2016.2809
79. Cao, Z.; Zhang, H.; Cai, X.; Fang, W.; Chai, D.; Wen, Y.; Chen, H.; Chu, F.; Zhang, Y. Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. Cell. Physiol. Biochem. 2017, 43(5), 1803-1812. https://doi.org/10.1159/000484066
80. Al-Megrin, W.A.; Alkhuriji, A.F.; Yousef, A.O.S.; Metwally, D.M.; Habotta, O.A.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Antagonistic Efficacy of Luteolin against Lead Acetate Exposure-Associated with Hepatotoxicity is Mediated via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activities. Antioxidants 2019, 9(1), 10. https://doi.org/10.3390/antiox9010010
81. Qian, W.; Liu, M.; Fu, Y.; Zhang, J.; Liu, W.; Li, J.; Li, X.; Li, Y.; Wang, T. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb. Pathog. 2020, 142, 104056. https://doi.org/10.1016/j.micpath.2020.104056
82. Krupodorova, T.; Sevindik, M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci. J. 2020, 9(1), 186-191.
83. Sevindik, M.; Rasul, A.; Hussain, G.; Anwar, H.; Zahoor, M.K.; Sarfraz, I.; Kamran, K.S.; Akgul, H.; Akata, I.; Selamoglu, Z. Determination of anti-oxidative, anti-microbial activity and heavy metal contents of Leucoagaricus leucothites. Pak. J. Pharm. Sci. 2018, 31(5(Supplementary)), 2163-2168.
84. Sevindik, M.; Akgul, H.; Akata, I.; Alli, H.; Selamoglu, Z. Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta Aliment. 2017, 46(4), 464-469. https://doi.org/10.1556/066.2017.46.4.9
85. Bal, C.; Sevindik, M.; Akgul, H.; Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma J. Eng. Nat. Sci. 2019, 37(1), 1-5.
86. Sevindik, M.; Gürgen, A.; Khassanov, V.T.; Bal, C. Biological Activities of Ethanol Extracts of Hericium erinaceus Obtained as a Result of Optimization Analysis. Foods 2024, 13(10), 1560. https://doi.org/10.3390/foods13101560
87. Mohammed, F.S.; Pehlivan, M.; Sevindik, M. Antioxidant, antibacterial and antifungal activities of different extracts of Silybum marianum collected from Duhok (Iraq). Int. J. Second. Metab. 2019, 6(4), 317-322. https://doi.org/10.21448/ijsm.581500
88. Mohammed, F.S.; Günal, S.; Pehlivan, M.; Doğan, M.; Sevindik, M.; Akgül, H. Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi Univ. J. Sci. 2020, 33(4), 670-677. https://doi.org/10.35378/gujs.707555
89. Krupodorova, T.; Barshteyn, V.; Al-Maali, G.; Sevindik, M. Requirements for vegetative growth of Hohenbuehelia myxotricha and its antimycotic activity. Polish J. Nat. Sci. 2022, 37(1), 75-92 http://dx.doi.org/10.31648/pjns.7525
90. Baba, H.; Sevindik, M.; Dogan, M.; Akgül, H. Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresen. Environ. Bull. 2020, 29(09), 7840-7846.
91. Eraslan, E.C.; Altuntas, D.; Baba, H.; Bal, C.; Akgül, H.; Akata, I.; Sevindik, M. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma J. Eng. Nat. Sci. 2021, 39(1), 24-28.
92. Krupodorova, T.; Barshteyn, V.; Tsygankova, V.; Sevindik, M.; Blume, Y. Strain-specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMC Biotechnol. 2024, 24(1), 9. https://doi.org/10.1186/s12896-024-00834-9
93. Karaltı, İ.; Eraslan, E.C.; Sarıdoğan, B.; Akata, I.; Sevindik, M. Total Antioxidant, Antimicrobial, Antiproliferative Potentials and Element Contents of Wild Mushroom Candolleomyces candolleanus (Agaricomycetes) from Turkey. Int. J. Med. Mushrooms 2022, 24(12), 69-76. https://doi.org/10.1615/intjmedmushrooms.2022045389
94. Weng, C.J.; Yen, G.C. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012, 31(1-2), 323-351. https://doi.org/10.1007/s10555-012-9347-y
95. Wang, Z.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. J. Agric. Food Chem. 2021, 69(5), 1441-1454. https://doi.org/10.1021/acs.jafc.0c08085
96. Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993, 342(8878), 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-u
97. Wang, L.; Lee, I.M.; Zhang, S.M.; Blumberg, J.B.; Buring, J.E.; Sesso, H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009, 89(3), 905-912. https://doi.org/10.3945/ajcn.2008.26913
98. Karakaya, S.; EL, S.N. Quercetin, luteolin, apigenin and kaempferol contents of some foods. Food Chem. 1999, 66(3), 289-292. https://doi.org/10.1016/S0308-8146(99)00049-7
99. Chen, T.; Li, L.P.; Lu, X.Y.; Jiang, H.D.; Zeng, S. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J. Agric. Food Chem. 2007, 55(2), 273-277. https://doi.org/10.1021/jf062088r
100. Hollman, P.C.H. Absorption, bioavailability and metabolism of flavonoids. Pharm. Biol. 2004, 42(suppl.), 74-83. https://doi.org/10.3109/13880200490893492